

Tutorial 9, Nov 17, 2023

Topological Sorting

- Suppose that in a directed graph $G = (V, E)$ where nodes represent tasks, and each edge (u, v) means that task u must be done before task v ; how should we order the tasks such that the order constraints are satisfied?
 - We can note that this is impossible if there exists a cycle in a graph
- This is the problem of *topological sorting*: given a directed acyclic graph (DAG) G , find an ordering of vertices in V such that for every directed edge (u, v) in G , u appears before v in the ordering
- Claim: we can obtain a topological sort of G by performing a DFS on G ; as each vertex is finished, we insert it into the start of a linked list; at the end of the DFS, the linked list will contain a topological sorting of the nodes
 - Note that since we insert at the front of the list, we essentially return the nodes in reverse order as they are finished
 - This has complexity $\Theta(m + n)$
- Proof:
 - The procedure gives back the nodes of G in order of decreasing finishing times
 - Therefore it suffices to show that for every edge (u, v) of G , $f[u] > f[v]$ in the DFS (this would mean that u comes before v in the topological sort)
 - First way: Consider the color of v just before the edge (u, v) is explored:
 - * If v was grey, then v must be an ancestor of u , since being grey means it is in the current path; so (u, v) is a back edge, but this would mean G has a cycle, which cannot happen
 - * If v is white, then v will become a descendant of u and (u, v) is a tree edge; therefore we have $d[u] < d[v] < f[v] < f[u]$
 - * If v is black, then v will have already been explored, so $f[v] < f[u]$
 - Second way: Let (u, v) be an edge; we know it cannot be a back edge since G has no cycles; consider all cases:
 - * If (u, v) is a tree edge or forward edge, then v is a descendant of u , so $d[u] < d[v] < f[v] < f[u]$
 - * If (u, v) is a cross edge, we claim $d[v] < f[v] < d[u] < f[u]$, i.e. v was completely done before u was discovered
 - By definition of cross edge, u and v do not have a descendant relationship
 - We cannot have $d[u] < d[v] < f[v] < f[u]$ or $d[v] < d[u] < f[u] < f[v]$, so the intervals are either entirely disjoint or crossed
 - We also cannot have $d[u] < d[v] < f[u] < f[v]$ or $d[v] < d[u] < f[v] < f[u]$, because this cannot happen in a DFS
 - Therefore our only options are $d[u] < f[u] < d[v] < f[v]$ or $d[v] < f[v] < d[u] < f[u]$
 - However, we can't have $f[u] < d[v]$, because of the edge (u, v) we must have that v was discovered before u finished