
Tutorial 6, Oct 27, 2023
• Consider an ADT storing a multiset with the operations Insert(x), which inserts an element, and

Diminish(), which deletes the
⌈n

2

⌉
largest elements

• We will use an unsorted linked list and n which tracks the size
– On each insert we simply add x to the end of the list and increment n
– On diminish, we find the median (5n comparisons), and then loop over all elements deleting

elements greater than m and enough copies of m
• We will show that this is O(1) amortized in the number of comparisons

– Each insert costs no comparisons, but we charge 12
– Each diminish costs 6n comparisons (5n for median finding and another n to delete), but we

charge 0
• Invariant: for all sequences of operations of length l: credit stored in each element is 12, and the total

charge is at least the total actual cost
– Prove by induction
– Base case is for a length 0 operation, in which case this is trivially true
– Inductive step: assuming this holds for l − 1, we will prove for l

* Case 1: the new operation is an insert
• We charge 12, so the new element has credit 12
• We charge 12 but use nothing, so the second part also holds

* Case 2: the new operation is a diminish
• We will pay for this operation with the credit of the deleted elements
• Each deleted element has 12 credits, so we have

⌈
12n

2

⌉
= 6n credits to work with

• But each diminish takes exactly 6n as explained above, so the credit invariant is maintained
• We also don’t touch the credits on the undeleted elements so the first invariant also holds

• Therefore a sequence of length l uses at most 12l charge, so each operation is O(1)

1


	Tutorial 6, Oct 27, 2023

