
Tutorial 2, Sep 22, 2023
Heapify

• The Max-Heapify operation restores heap property for a single element by swapping it with the
greater of its two children if needed, and then recursing on that child

– The precondition is that the left and right subtrees are valid heaps
• Define a procedure Build-Heap, which takes any arbitrary array, and then turns it into a valid

max-heap by calling Max-Heapify on every element, in reverse, starting from halfway through the
array

– The second half of the array is ignored because those nodes will all be leaves, so they are already
valid max-heaps

– Note we have to go in reverse to satisfy the precondition for Max-Heapify
• We know Build-Heap is at least Ω(n); if we give it an array that’s already a valid heap, it will still

traverse it
• The upper bound is clearly at most O(n log n) but can we do better?

– Calling Max-Heapify on a node on level d takes O(h − d)
– In the worst scenario, every single node calls Max-Heapify and recurses down every single level

* The runtime would be
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* Let i = h − d so we have
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• So our overall bound is 2c2h = 2c2log n = 2cn = O(n)
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