
Tutorial 2, Sep 22, 2023
Heapify

• The Max-Heapify operation restores heap property for a single element by swapping it with the
greater of its two children if needed, and then recursing on that child

– The precondition is that the left and right subtrees are valid heaps
• Define a procedure Build-Heap, which takes any arbitrary array, and then turns it into a valid

max-heap by calling Max-Heapify on every element, in reverse, starting from halfway through the
array

– The second half of the array is ignored because those nodes will all be leaves, so they are already
valid max-heaps

– Note we have to go in reverse to satisfy the precondition for Max-Heapify
• We know Build-Heap is at least Ω(n); if we give it an array that’s already a valid heap, it will still

traverse it
• The upper bound is clearly at most O(n log n) but can we do better?

– Calling Max-Heapify on a node on level d takes O(h − d)
– In the worst scenario, every single node calls Max-Heapify and recurses down every single level

* The runtime would be
h−1∑
d=0

2dc(h − d), since there are 2d nodes in level d and each performs

h − d operations

* Let i = h − d so we have
h∑

i=1
2h−ii = c2h

h∑
i=1

i

2i

• Recall
∞∑

i=1
xi = 1

1 − x
=⇒

∞∑
i=1

ixi−1 = 1
(1 − x)2 =⇒

∞∑
i=1

ixi = x

(1 − x)2

• Therefore
h∑

i=1

i

2i
<

∞∑
i=1

i

2i
=

1
2(

1 − 1
2
)2 = 2

• So our overall bound is 2c2h = 2c2log n = 2cn = O(n)

1


	Tutorial 2, Sep 22, 2023
	Heapify


