
Tutorial 10, Nov 24, 2023
Prim’s MST Algorithm

• Intuition: build up the MST from one node, adding one edge to the tree at a time by selecting the
smallest edge out of the tree

• Build a tree T ∗ and keep an array closest[u] so that at the end of each iteration, for u /∈ T ∗, closest[u]
is a node v ∈ T ∗ that has the edge of minimum cost between u and v

• Initially, T ∗ is just a single node v, so initialize closest[u] to v for every other node
• For each iteration:

– Iterate over all nodes to find the minimum weight edge going out of T ∗, connecting to node v
* For ever node w, check the weight of the edge between w and closest[w]

– Add the edge and node v to the current tree
– For every node u that’s not in the current tree, update closest[u]← min(closest[u], c[u, v]) where

c[u, v] is the weight of the edge connecting u, v (infinite if no such edge exists)
• Note that we use an adjacency matrix to look up edge weights in O(1)
• In this formulation, the complexity is O(n2)

Uniqueness of MSTs
• Theorem: if G has only distinct edge weights, then its MST is unique
• Proof:

– Suppose that G has 2 distinct MSTs: A and B
– Take diff(A, B) to be all edges that are in A but not B, or in B and not A
– Let e1 be the (unique) edge of minimum weight in diff(A, B); WLOG assume it is in A and not

in B
– Now consider B′ = B + e1; B′ now has a unique cycle C containing it
– A cannot contain C, so C has an edge e2 /∈ A, but e2 ∈ B, so e2 ∈ diff(A, B), which means e2

has greater weight than e1
– Let B∗ = B + e1 − e2; after removing an edge from the cycle, we are left with a tree, so B∗ is a

spanning tree
– However the weight of B∗ is less than the weight of B since the weight of e2 is greater than the

weight of e1
– This leads to a contradiction because B is an MST, so B∗ cannot have a smaller weight

1


	Tutorial 10, Nov 24, 2023
	Prim’s MST Algorithm
	Uniqueness of MSTs


