
Lecture 9, Oct 11, 2023
Bloom Filters

• Bloom filters are like space-efficient “probabilistic dictionaries”
• Instead of storing the entire key, we will store only the hashes of a key in a set S
• The following operations are supported:

– Insert(S, x): insert x into S
– Search(S, x): search for x in S; this can have two results: “false” (in which case x /∈ S for sure)

or “likely true” (in which case it is likely x ∈ S, but it could be a false positive)
• A bloom filter consists of an array BF [0..m − 1] of m bits, initially all set to 0, and t independent hash

functions h1, . . . , ht that all map to the range [0, m − 1]
– We will assume that these hash functions are all SUHA, i.e. any key is equally likely to be hashed

into any slot
• On Insert(S, x), we hash x using all t functions, resulting in t indices; the bits at all these indices are

set to 1
• On Search(S, x), we hash x using all t functions, and check that all the bits at those indices are 1; if

this is true, then x is likely in S, otherwise it is definitely not in S
• Suppose we insert n keys into an empty Bloom filter with m bits and t independent hash functions all

satisfying SUHA; what is the probability that searching for a key not in the filter will return a positive
result?

– Consider an arbitrary index i in the filter; the probability that a key hashes to i for each hash
function is 1

m
, or 1 − 1

m
to miss i

– Therefore with t has functions, the probability of i remaining zero is
(

1 − 1
m

)t

, since all hash

functions are independent

– After n keys are inserted, the probability of i remaining zero is now
(

1 − 1
m

)nt

* Assuming 1
m

is small, then we can approximate this as
(

e− 1
m

)nt

= e− nt
m

– For a false positive we require that all t indices that x hashes to are 1; however the probability
that each individual index is 1 is technically not independent

– In practice, we can assume that these events are independent to get a (pretty good) approximation
that the probability of a false positive is

(
1 − e− nt

m

)t

• How do we find the optimal size of t?
– Fix the ratio m

n
, and minimize

(
1 − e− nt

m

)t

with respect to t

– The optimal t turns out to be ln(2)m

n
≈ 0.69m

n
– Substituting this back gives us 0.62 m

n as the chance of a false positive
– e.g. allocating 8 bits per element gives us an optimal t of 5.52 (which we round to 6 has functions),

giving us about 2% chance of false positives

1


	Lecture 9, Oct 11, 2023
	Bloom Filters


