Lecture 9, Oct 11, 2023

Bloom Filters

- Bloom filters are like space-efficient "probabilistic dictionaries"
- Instead of storing the entire key, we will store only the hashes of a key in a set S
- The following operations are supported:
 - INSERT(S, x): insert x into S
 - SEARCH(S, x): search for x in S; this can have two results: "false" (in which case $x \notin S$ for sure) or "likely true" (in which case it is likely $x \in S$, but it could be a false positive)
- A bloom filter consists of an array BF[0.m-1] of m bits, initially all set to 0, and t independent hash functions h_1, \ldots, h_t that all map to the range [0, m-1]
 - We will assume that these hash functions are all SUHA, i.e. any key is equally likely to be hashed into any slot
- On INSERT(S, x), we hash x using all t functions, resulting in t indices; the bits at all these indices are set to 1
- On SEARCH(S, x), we hash x using all t functions, and check that all the bits at those indices are 1; if this is true, then x is likely in S, otherwise it is definitely not in S
- Suppose we insert n keys into an empty Bloom filter with m bits and t independent hash functions all satisfying SUHA; what is the probability that searching for a key not in the filter will return a positive result?
 - Consider an arbitrary index i in the filter; the probability that a key hashes to i for each hash function is $\frac{1}{m}$, or $1 - \frac{1}{m}$ to miss *i*
 - Therefore with t has functions, the probability of i remaining zero is $\left(1-\frac{1}{m}\right)^t$, since all hash functions are independent
 - After n keys are inserted, the probability of i remaining zero is now $\left(1-\frac{1}{m}\right)^{n}$
 - * Assuming $\frac{1}{m}$ is small, then we can approximate this as $\left(e^{-\frac{1}{m}}\right)^{nt} = e^{-\frac{nt}{m}}$
 - For a false positive we require that all t indices that x hashes to are 1; however the probability that each individual index is 1 is technically not independent
 - In practice, we can assume that these events are independent to get a (pretty good) approximation that the probability of a false positive is $\left(1 - e^{-\frac{nt}{m}}\right)^{t}$
- How do we find the optimal size of t?
 - Fix the ratio $\frac{m}{n}$, and minimize $\left(1 e^{-\frac{nt}{m}}\right)^t$ with respect to t

 - The optimal t turns out to be $\ln(2)\frac{m}{n} \approx 0.69\frac{m}{n}$ Substituting this back gives us $0.62\frac{m}{n}$ as the chance of a false positive
 - e.g. allocating 8 bits per element gives us an optimal t of 5.52 (which we round to 6 has functions), giving us about 2% chance of false positives