
Lecture 8, Oct 4, 2023
Hash Tables

• A hash table is an implementation of a dictionary that uses hashing
• Idea: If the set of possible keys U is small, we can use a direct access table T [0..u − 1], so that item

with key k ∈ U is stored at T [k]
– This gives us Θ(1) search, insert, and delete, at the cost of using a lot of memory – each possible

key must have a slot associated with it, regardless of whether there’s something stored there
– If U is large, then it will be impractical or impossible to do this
– Can we do better?

• Let m be the size of the hash table T [0..m − 1] and let n be the number of keys in S (we typically
choose m so that it is Θ(n))

Definition

Given a set U of possible keys and a hash table of size m, a hash function h is a function that takes a
key in U to an index in the table, i.e.

k ∈ U → h(k) ∈ { 0, 1, . . . , m − 1 }

We say that the key k hashes into the slot h(k) of T .

• The basic idea is that given a key k, we will store it at the slot h(k)
• Since m is smaller than the size of U , inevitably we will eventually have two distinct k hashing to the

same h(k); this is called a hash collision
– One way to get around this is hashing with chaining, where each slot in T stores a linked list of all

the keys with the same hash; on a collision, simply add the item to the start of the list
• With hash chaining, we have Θ(1) insertion, Θ(1) deletion (assuming we already have a pointer to the

element), but Θ(n) search since in the worst case, all the keys can end up being hashed to the same slot
• Intuitively we want a hash function that spreads out the keys; we state this as the Simple Uniform

Hashing Assumption (SUHA): any key k ∈ U is equally likely to hash into any of the m slots of T ,
independent of all other keys

– The probability of k hashing into i is 1
m

regardless of i

• Starting from an empty T and inserting n keys, by SUHA we expect n

m
keys in each slot on average;

n

m
= α is called the load factor of the table
– If we perform a search for k, either the key is not in the table or it is; if the key is in the table, we

expect α

2 comparisons on average; if it is not, we expect α comparisons
– Therefore the search on average takes Θ(α)

• As long as we keep n within a constant factor of m, we have constant Θ(1) time on all operations!
– n grows with each insertion, but if it gets too large we can resize the table

• One way to implement such a hashing function is to simply take h(k) = k mod m where m is a prime
number; then if we assume k is uniformly distributed, this hash function will satisfy SUHA

1


	Lecture 8, Oct 4, 2023
	Hash Tables


