
Lecture 7, Oct 2, 2023
Augmenting Data Structures

• Sometimes we need to modify an existing data structure to perform additional operations; this is called
augmenting the data structure

1. Determine which additional info to store for your operations
2. Check that this additional information can be cheaply maintained during each operation – don’t

accidentally change the runtime complexity of the structure’s operations!
3. Use the additional information to efficiently implement the new operations you need

• Example: Dynamic Order Statistics: maintain a dynamic set S of elements with distinct keys, supporting
search, insert, delete, in addition to:

– Select(k): find the element with rank k, i.e. the kth smallest element in S
– Rank(x): determine the rank of the element x, i.e. its order in the set
– We can augment an AVL tree!

1. At each node x, we will store the size of the subtree rooted at x
* For every other node, the size is the sum of the sizes of its two children plus one
* For leaf nodes the size is 1, for nil nodes the size is 0

2. This information is cheap to maintain, because to update the size of a node, we simply set it
as the sum of the sizes of its children plus one

* On insertion, increase the size of every parent node by 1, all the way up till the root,
opposite on deletion

* On a rotation, update the size of each node that underwent a rotation as the sum of the
sizes of its children plus one

3. We can use this information to efficiently implement Select(k) and Rank(k):
* Observation: if a node has n nodes in its left subtree, then there are n nodes smaller than

it in the left subtree, so it has relative rank n + 1 in its own subtree
* For Select(k):

• The rank of the current node is the size of the left subtree plus one
• If k is equal to the current rank, return the current node since it has the correct rank

already
• If k is less than the current rank, recurse on the left subtree
• If k is greater than current rank, recurse on the right subtree, but instead of k, the rank

we want is now k minus the current rank
• This has complexity O(h) = O(log n) since in the worst case it goes down the entire tree

* For Rank(x):
• If the current node is x, return the current rank
• If the key at x is less than the key at the current node, recurse on the left subtree
• If the key at x is greater than the key at the current node, recurse on the right subtree

and return the result plus the current rank
• This has complexity O(h) = O(log n) since in the worst case it goes down the entire tree

– Focus on the modifications that you made to the original data structure, because it is assumed
that you already know how the original operations work!

1


	Lecture 7, Oct 2, 2023
	Augmenting Data Structures


