Lecture 7, Oct 2, 2023

Augmenting Data Structures

e Sometimes we need to modify an existing data structure to perform additional operations; this is called
augmenting the data structure
1. Determine which additional info to store for your operations
2. Check that this additional information can be cheaply maintained during each operation — don’t
accidentally change the runtime complexity of the structure’s operations!
3. Use the additional information to efficiently implement the new operations you need
e Example: Dynamic Order Statistics: maintain a dynamic set S of elements with distinct keys, supporting
search, insert, delete, in addition to:
— SELECT(k): find the element with rank k, i.e. the kth smallest element in S
— RANK(z): determine the rank of the element z, i.e. its order in the set
— We can augment an AVL tree!
1. At each node x, we will store the size of the subtree rooted at z
* For every other node, the size is the sum of the sizes of its two children plus one
* For leaf nodes the size is 1, for nil nodes the size is 0
2. This information is cheap to maintain, because to update the size of a node, we simply set it
as the sum of the sizes of its children plus one
* On insertion, increase the size of every parent node by 1, all the way up till the root,
opposite on deletion
* On a rotation, update the size of each node that underwent a rotation as the sum of the
sizes of its children plus one
3. We can use this information to efficiently implement SELECT(k) and RANK(k):
* QObservation: if a node has n nodes in its left subtree, then there are n nodes smaller than
it in the left subtree, so it has relative rank n + 1 in its own subtree
* For SELECT(k):
e The rank of the current node is the size of the left subtree plus one
o If k is equal to the current rank, return the current node since it has the correct rank
already
e If k is less than the current rank, recurse on the left subtree
e If k is greater than current rank, recurse on the right subtree, but instead of k, the rank
we want is now k minus the current rank
o This has complexity O(h) = O(logn) since in the worst case it goes down the entire tree
* For RANK(z):
e If the current node is z, return the current rank
o If the key at x is less than the key at the current node, recurse on the left subtree
o If the key at x is greater than the key at the current node, recurse on the right subtree
and return the result plus the current rank
o This has complexity O(h) = O(logn) since in the worst case it goes down the entire tree
— Focus on the modifications that you made to the original data structure, because it is assumed
that you already know how the original operations work!
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