Lecture 7, Oct 2, 2023

Augmenting Data Structures

e Sometimes we need to modify an existing data structure to perform additional operations; this is called
augmenting the data structure
1. Determine which additional info to store for your operations
2. Check that this additional information can be cheaply maintained during each operation — don’t
accidentally change the runtime complexity of the structure’s operations!
3. Use the additional information to efficiently implement the new operations you need
e Example: Dynamic Order Statistics: maintain a dynamic set S of elements with distinct keys, supporting
search, insert, delete, in addition to:
— SELECT(k): find the element with rank k, i.e. the kth smallest element in S
— RANK(z): determine the rank of the element z, i.e. its order in the set
— We can augment an AVL tree!
1. At each node x, we will store the size of the subtree rooted at z
* For every other node, the size is the sum of the sizes of its two children plus one
* For leaf nodes the size is 1, for nil nodes the size is 0
2. This information is cheap to maintain, because to update the size of a node, we simply set it
as the sum of the sizes of its children plus one
* On insertion, increase the size of every parent node by 1, all the way up till the root,
opposite on deletion
* On a rotation, update the size of each node that underwent a rotation as the sum of the
sizes of its children plus one
3. We can use this information to efficiently implement SELECT(k) and RANK(k):
* QObservation: if a node has n nodes in its left subtree, then there are n nodes smaller than
it in the left subtree, so it has relative rank n + 1 in its own subtree
* For SELECT(k):
e The rank of the current node is the size of the left subtree plus one
o If k is equal to the current rank, return the current node since it has the correct rank
already
e If k is less than the current rank, recurse on the left subtree
e If k is greater than current rank, recurse on the right subtree, but instead of k, the rank
we want is now k minus the current rank
o This has complexity O(h) = O(logn) since in the worst case it goes down the entire tree
* For RANK(z):
e If the current node is z, return the current rank
o If the key at x is less than the key at the current node, recurse on the left subtree
o If the key at x is greater than the key at the current node, recurse on the right subtree
and return the result plus the current rank
o This has complexity O(h) = O(logn) since in the worst case it goes down the entire tree
— Focus on the modifications that you made to the original data structure, because it is assumed
that you already know how the original operations work!



	Lecture 7, Oct 2, 2023
	Augmenting Data Structures


