
Lecture 3, Sep 18, 2023
Binomial Heaps

• What if we had 2 priority queues, and we wanted to merge them in an efficient way?
– Using a binary heap, this would take n log n time; can we find a way to do this in log n time?

• We will present a new data structure, a binomial heap, which can do all operations in O(log n) time (at
the cost of having O(log n) time to view the max element, as opposed to constant time)

Definition

A binomial tree is recursively defined as follows:
1. A binomial tree of height 0, B0 consists of a single node
2. A binomial tree of height k, Bk consists of two binomial trees Bk−1, where one becomes the

parent of the other
Alternatively, the root Bk has k children, with the first child being a binomial tree B0, the second
being B1, etc. until the k-th child Bk−1.

Figure 1: Example binomial trees.

• A binomial tree Bk has:
– Height k
– 2k nodes
–

(
k

d

)
nodes at depth d (hence why it’s called a binomial tree)

Definition

A binomial forest of size n is denoted Fn, which contains a sequence of Bk trees with strictly decreasing
ks and n nodes in total.

• Example: if we want a forest F7, we can decompose it into 3 binomial trees with 4, 2, and 1 nodes
respectively, so the forest contains B2, B1, B0

– This is equivalent to expressing n in binary
– e.g. 9 = 10012 = 23 + 20 so F9 contains B3, B0
– Let α(n) be the number of 1s in the binary representation of n, then Fn has α(n) trees

• Fn has n − α(n) edges (since each node comes with 1 edge, except for roots, and there are α(n) trees)

Definition

A min-binomial heap of n elements is a binomial forest Fn such that each binomial tree Bk within the
forest satisfies the min-heap property, i.e. a parent is smaller than both its children.

1



• A binomial heap of N elements can be built in O(n) operations from scratch
– One key comparison is needed per binomial heap edge

• But how do we actually put this in memory?
– Different nodes have different number of children, so using pointers directly will be inefficient
– For every node, we will have 3 pointers: one to its parent, one to its leftmost child, and one to its

next sibling
* To access the children of a node, we access the leftmost child first, and then go through the

chain of sibling pointers
* The sibling pointers of root nodes connect between different trees, pointing to the next bigger

Bk tree
– Finally, we need to keep track of the head of the data structure, which is a pointer to the smallest

Bk tree
– All the pointers make the binomial heap much less efficient in memory than binary heaps

• Two important properties to note:
– We can merge two min-heap ordered Bk trees into a single min-heap ordered Bk+1 tree with just

a single key comparison, by making the tree with the smaller root the parent tree
– Deleting the root of a min-heap ordered Bk tree gives a min binomial heap, since the children are

binomial trees B0, B1, . . . , Bk−1
• We can now implement the Union(T , Q) operation, which merges two heaps

– The operation works like binary addition:
* Start with the B0 trees in both heaps
* If there is a Bk in one heap but not the other heap, simply add this tree to the result
* If there are Bk trees in both heaps, merge them into a Bk+1 tree and make it a “carry”; merge

this carry with the existing Bk+1 trees of the two heaps
– Since each Bk tree merge takes constant time and both input heaps have at most log n trees, the

complexity is O(log n)
• An insert operation is equivalent to merging with a heap of size 1
• For Min(T ), we have to scan the root of every Bk tree; this gives us O(log n) complexity
• For ExtractMin(T ), find the Bk root that contains the minimum and remove it; this gives us another

binomial heap made of its children, so we can simply merge it into the original heap

2


	Lecture 3, Sep 18, 2023
	Binomial Heaps


