
Lecture 23, Dec 4, 2023
Analyzing Problem Complexity – Adversary Approach

• Example problem: Find both the minimum and maximum of a set S of n distinct integers
• Naive algorithm: scan S twice, first to find the maximum, and then find the minimum

– Finding the max takes n − 1 comparisons exactly
– Finding the minimum then takes n − 2 (since we don’t have to compare against the max we just

found)
– Therefore total is 2n − 3 comparisons

• Improved algorithm: divide S into n

2 pairs and find the maximum and minimum of each pair; then
scan all the maxes to find the max, and all the mins to find the min

– Initially n

2 comparisons to find the max and min of each pair, then n

2 − 1 comparisons each to
find the max and min

– Therefore the total is 3n

2 − 2 comparisons
• Another algorithm is a divide-and-conquer approach of first dividing the set into 2, finding the min and

max of each set, and then compare those
– This gives the same number of comparisons as the above algorithm, however

• Theorem: Any comparison-based algorithm to solve this problem makes at least 3n

2 − 2 comparisons in
the worst case

• We prove this by using an adversary argument: given any algorithm, the adversary will come up with
an input that forces the algorithm to do at least 3n

2 − 2 comparisons
• At any point, we can categorize every element in the input set into 4 subsets: N – never compared,

W – won every comparison so far, L – lost every comparison so far, M – won some and lost some
comparisons

– Initially, the size of N is n, while every other set has size 0
– When the algorithm finishes, the size of N will be 0, the size of W and L are both exactly 1, and

the size of m is n − 2
• Intuitively, the maximum will win all comparisons, and the minimum will lose all comparisons; all other

nodes have mixed comparison results
– The adversary wants to delay the creation of mixed comparison results as much as possible
– Note the adversary must not create cycles as to keep the input valid
– The rough idea is we want elements in W to keep winning comparisons, and elements in L to keep

losing, to delay populating M for as long as possible
• Adversary’s strategy:

– Compare N to N : assign arbitrarily, increasing W by 1 and L by 1
– Compare N to W : N loses, increasing L by 1 and keeping W the same
– Compare N to L: N wins, increasing W by 1 and keeping L the same
– Compare N to M : N wins, increasing W by 1 and keeping M the same
– Compare W to W : one wins, increasing M by 1 and decreasing W by 1
– Compare W to L: W wins, keeping both the same
– Compare W to M : W wins, keeping both the same
– Compare L to L: one wins, increasing M by 1 and decreasing L by 1
– Compare L to M : M wins, keeping both the same
– Compare M to M : assign arbitrarily, keeping both the same

• Claim: by following this strategy, we can always produce inputs that are consistent (i.e. no cycles) and
forces the algorithm to take at least 3n

2 − 2
– Starting from n elements all in N , any algorithm must:

1. Create n − 2 elements in M
* This only happens when we compare W to W or L to L
* We need exactly n − 2 comparisons of this type to create the elements we need in M

1



2. Create n elements in W or L (n − 2 of which will be changed to M , with the last 2 remaining)
* The best way to do this is by comparing N to N , which creates 1 of each W and L

* Therefore we need n

2 comparisons to create the n that we need

– Therefore the algorithm must perform at least n − 2 + n

2 = 3n

2 − 2 comparisons to reach the result

2


	Lecture 23, Dec 4, 2023
	Analyzing Problem Complexity – Adversary Approach


