Lecture 22, Nov 29, 2023

Analyzing Problem Complexity – Decision Trees

- Given a general problem, what is the cost of solving the problem, by the best possible algorithm?
 This is the problem complexity
- Example problem: sorting m distinct algorithms
 - We know we can do it in $O(n \log n)$ comparisons since we have algorithms that achieve this Can we do better?
- Theorem: Any comparison-based sorting algorithm takes $\Omega(n \log n)$ comparisons in the worst case
 - A comparison-based sorting algorithm is an algorithm that is only allowed to compare two elements in the input, and make decisions based on the result
 - This prohibits e.g. bucket sort or counting sort, since these use the actual value of the element
 - Therefore, heapsort and mergesort are asymptotically optimal
- Any such sorting algorithm \mathcal{A} executing on a finite input can be described by a *decision tree*, a binary tree where at each node we have a comparison, and each of the two possible outcomes of the comparison gives a subtree
 - Each internal node of the tree has a label i: j, which represents a comparison between elements a_i and a_j
 - * The left subtree, \leq , denotes all possibilities where $a_i \leq a_j$; similarly the right subtree > denotes $a_i > a_j$
 - Every leaf of the tree represents one possible solution of the problem, i.e. a permutation of the input list
- Using the decision tree we can prove the above theorem:
 - Let \mathcal{A} be any comparison-based sorting algorithm to sort n distinct integers
 - Let $T_{\mathcal{A}}$ be its corresponding decision tree
 - For each input permutation π of integers $1, 2, \ldots, n$, $T_{\mathcal{A}}$ must have a distinct reachable leaf representing the sorting of π , therefore $T_{\mathcal{A}}$ must have at least n! leaves
 - Let h be the height of $T_{\mathcal{A}}$; since $T_{\mathcal{A}}$ is a binary (or any n-ary tree) of height h, it has at most 2^h leaves
 - Therefore $h \ge \log(n!)$, which is $\Theta(n \log n)$, so h is $\Omega(n \log n)$
 - Since we need h comparisons to reach a leaf in the worst case, \mathcal{A} also does $\Omega(n \log n)$ comparisons in the worst case