
Lecture 22, Nov 29, 2023
Analyzing Problem Complexity – Decision Trees

• Given a general problem, what is the cost of solving the problem, by the best possible algorithm?
– This is the problem complexity

• Example problem: sorting m distinct algorithms
– We know we can do it in O(n log n) comparisons since we have algorithms that achieve this
– Can we do better?

• Theorem: Any comparison-based sorting algorithm takes Ω(n log n) comparisons in the worst case
– A comparison-based sorting algorithm is an algorithm that is only allowed to compare two elements

in the input, and make decisions based on the result
– This prohibits e.g. bucket sort or counting sort, since these use the actual value of the element
– Therefore, heapsort and mergesort are asymptotically optimal

• Any such sorting algorithm A executing on a finite input can be described by a decision tree, a binary
tree where at each node we have a comparison, and each of the two possible outcomes of the comparison
gives a subtree

– Each internal node of the tree has a label i : j, which represents a comparison between elements ai

and aj

* The left subtree, ≤, denotes all possibilities where ai ≤ aj ; similarly the right subtree >
denotes ai > aj

– Every leaf of the tree represents one possible solution of the problem, i.e. a permutation of the
input list

• Using the decision tree we can prove the above theorem:
– Let A be any comparison-based sorting algorithm to sort n distinct integers
– Let TA be its corresponding decision tree
– For each input permutation π of integers 1, 2, . . . , n, TA must have a distinct reachable leaf

representing the sorting of π, therefore TA must have at least n! leaves
– Let h be the height of TA; since TA is a binary (or any n-ary tree) of height h, it has at most 2h

leaves
– Therefore h ≥ log(n!), which is Θ(n log n), so h is Ω(n log n)
– Since we need h comparisons to reach a leaf in the worst case, A also does Ω(n log n) comparisons

in the worst case

1


	Lecture 22, Nov 29, 2023
	Analyzing Problem Complexity – Decision Trees


