
Lecture 20, Nov 22, 2023
Kruskal’s MST Algorithm

• Kruskal’s algorithm builds up the MST edge-by-edge
• Sort all edges in the forest in ascending order, and keep a spanning forest (starting from the trivial

forest); for every edge in order of cost, if it connects two disjoint forests, include it in the MST; stop
when we have exactly n − 1 edges

– The algorithm can be proven correct by induction, making use of the MST construction theorem
• Use a union-find structure to keep track of the partition of nodes into minimum spanning forests
• Often times we don’t need to go through all edges; to optimize the algorithm we can use a heap and

extract only the edges as necessary
– The initial call to Heapify() takes only O(m), and each subsequent extraction takes around

O(log m)
– In the worst case where we need to look at every edge, this still takes O(m log m), but if we only

need a fraction of edges this can be substantially faster
• Formally: given a connected, undirected, weighted graph G = (V , E) where V = { 1, 2, . . . , n } and E

is an array of m weighted edges:
1. Turn E into a min-heap
2. For i = 1 to n, Make-Set(i) (initialize disjoint sets)
3. Initialize the set of MST edges with an empty set
4. While we have less than n − 1 edges in the MST, do:

1. Extract the edge (u, v) with minimum weight from E
2. Find the representatives of the sets containing u, v; if they are different:

1. Merge the two sets
2. Add the edge (u, v) to the MST

• Complexity analysis:
– Building the min-heap takes O(m)
– Making the n sets takes O(n)
– In the worst case, the loop runs m times since we have to go through all edges
– All the heap extractions then take O(m log n) (note O(m log n) = O(m log m), since m ≤ n2)
– We also have n − 1 unions and at most 2m finds, giving a complexity of O(m log∗ n) (using a

disjoint-set forest with path compression and union by size)
– Therefore the total complexity is O(m log n)

1


	Lecture 20, Nov 22, 2023
	Kruskal’s MST Algorithm


