Lecture 20, Nov 22, 2023

Kruskal's MST Algorithm

- Kruskal's algorithm builds up the MST edge-by-edge
- Sort all edges in the forest in ascending order, and keep a spanning forest (starting from the trivial forest); for every edge in order of cost, if it connects two disjoint forests, include it in the MST; stop when we have exactly n 1 edges

– The algorithm can be proven correct by induction, making use of the MST construction theorem

- Use a union-find structure to keep track of the partition of nodes into minimum spanning forests
- Often times we don't need to go through all edges; to optimize the algorithm we can use a heap and extract only the edges as necessary
 - The initial call to HEAPIFY() takes only O(m), and each subsequent extraction takes around $O(\log m)$
 - In the worst case where we need to look at every edge, this still takes $O(m \log m)$, but if we only need a fraction of edges this can be substantially faster
- Formally: given a connected, undirected, weighted graph G = (V, E) where $V = \{1, 2, ..., n\}$ and E is an array of m weighted edges:
 - 1. Turn E into a min-heap
 - 2. For i = 1 to n, MAKE-SET(i) (initialize disjoint sets)
 - 3. Initialize the set of MST edges with an empty set
 - 4. While we have less than n-1 edges in the MST, do:
 - 1. Extract the edge (u, v) with minimum weight from E
 - 2. Find the representatives of the sets containing $\boldsymbol{u},\boldsymbol{v};$ if they are different:
 - 1. Merge the two sets
 - 2. Add the edge (u, v) to the MST
- Complexity analysis:
 - Building the min-heap takes O(m)
 - Making the *n* sets takes O(n)
 - In the worst case, the loop runs m times since we have to go through all edges
 - All the heap extractions then take $O(m \log n)$ (note $O(m \log n) = O(m \log m)$, since $m \le n^2$)
 - We also have n 1 unions and at most 2m finds, giving a complexity of $O(m \log^* n)$ (using a disjoint-set forest with path compression and union by size)
 - Therefore the total complexity is $O(m \log n)$