
Lecture 14, Oct 25, 2023
Amortized Analysis Example: Dynamic Tables

• Consider a table T occupying a contiguous region in memory, which supports the insert and delete
operations; let α(T ) be the load factor (ratio of items stored to size)

• When we insert to reach α(T ) = 1, we have to expand the table by allocating a new table larger than T
and then copy over all the elements

– Typically, we double the size of the table every time it is full
– With this, α(T ) ≥ 1

2 (we don’t waste more than half of the table)
– Each insertion where the table is full costs 1 for insertion and the cost to copy the entire table

• What is the amortized cost per insertion?
– Starting with aggregate analysis:

* Starting from an empty table of size 1, what is the cost of n insertions?
* Notice that after n insertions, we will have expanded the table ⌊log2 n⌋ times; each expansion

costs the same as the size of the table at that point
* Therefore the total cost of n inserts is n (insertions) plus the sum of all powers of 2 smaller

than n (expansions)

* The cost is n +
⌊log2 n⌋∑

k=0
2k = n + (2⌊log2 n⌋ − 1) ≤ n + 2n = 3n

* Therefore the amortized cost is O(1)
– Now with the accounting method:

* Let ci be the actual cost of the i-th operation and ĉi be the cost charged for that operation

* We need
n∑

i=1
ĉi ≥

n∑
i=1

ci for all n, or equivalently the credit
∑

i

ĉi −
∑

i

ci ≥ 0 at all times

* For a heuristic, consider just having finished an expensive operation so we have no credit, and
think about when the next expensive operation will come
• The expensive operation would be a table expansion; right after an expansion to a table

of size n we have half of the entries, n

2 , being filled

• The next expensive operation will come in n

2 operations when the table is filled completely,

which will cost n – giving us an extra charge of n
n
2

= 2

• Since inserting the item itself has a cost of 1, we charge 3 per insertion
* Consider charging 3 per insertion; 1 will go towards the insertion of the element, and the rest

2 are stored as credit
• 1 credit is attached to the element itself and the last one is attached to another element in

the table
• By doing this, whenever the table is filled completely we will have a credit on every single

element
• Now we can do the copying with the credits attached to the elements, so the credit

invariant is maintained
* For a sequence σ of n inserts, we charge 3 per insert to maintain the credit invariant, so the

total cost is 3n, giving us an amortized cost of O(1)
• When we delete elements such that α(T ) is too low, we reallocate the table to reduce the amount of

memory wasted, so that α(T ) ≥ c, a constant, and to keep the amortized cost per operation constant
– A naive approach would be to half the size of the table when α(T ) <

1
2

* This does ensure the load factor is at least 1/2, but if we have alternating insert and delete,
we will be doubling and halving the size constantly

* Consider a sequence σ of n

2 inserts, followed by an alternating sequence of 2 inserts and 2

deletes; now every 2 operations will give a cost of n

2 , so we get Ω(n2) complexity or Ω(n) per

1



operation
– A better approach would be to half the table when α(T ) ≤ 1

4
* When we move to a smaller table, we will have half the space being filled
* Regardless of deletion or insertion, the load factor will be 1/2 after moving; this will simplify

analysis
* Consider a sequence σ of inserts and deletes and use the accounting method

• After an expensive operation, the table will be half full
• The next expensive operation will be either an expansion or contraction

– For an expansion, we need another n

2 insertions; the expansion costs n, so the averaged
out cost is 2 extra per insertion

– For a contraction, we need another n

4 deletions; the contraction costs n

4 , so the averaged
cost is 1 extra per deletion

• Therefore we charge 3 per insertion and 2 per deletion
* The amortized cost is then O(1) per operation

2


	Lecture 14, Oct 25, 2023
	Amortized Analysis Example: Dynamic Tables


