Lecture 14, Oct 25, 2023

Amortized Analysis Example: Dynamic Tables

e Consider a table T occupying a contiguous region in memory, which supports the insert and delete
operations; let a(T) be the load factor (ratio of items stored to size)
o When we insert to reach a(T") = 1, we have to expand the table by allocating a new table larger than T
and then copy over all the elements
— Typically, we double the size of the table every time it is full

1
— With this, «(T) > 5 (we don’t waste more than half of the table)

— FEach insertion where the table is full costs 1 for insertion and the cost to copy the entire table
e What is the amortized cost per insertion?

- Startmg with aggregate analysis:
* Starting from an empty table of size 1, what is the cost of n insertions?
Notice that after n insertions, we will have expanded the table |log, n| times; each expansion
costs the same as the size of the table at that point
Therefore the total cost of n inserts is n (insertions) plus the sum of all powers of 2 smaller
than n (expansions)

[logy n]
* The cost is n + Z ok = 4 (2Ue82n) _ 1) <420 =3n
k=0

Therefore the amortized cost is O(1)
— Now with the accounting method:

* Let ¢; be the actual cost of the i-th operation and ¢é; be the cost charged for that operation

* We need Z ¢ > Z ¢; for all n, or equivalently the credit Z Ci — Z ¢; > 0 at all times

1=1 1=1
* For a heuristic, consider just having finished an expensive operatlon so we have no credit, and

think about when the next expensive operation will come
o The expensive operation would be a table expansion; right after an expansion to a table

*

*

n
of size n we have half of the entries, 5’ being filled
n
e The next expensive operation will come in 5 operations when the table is filled completely,
n
which will cost n — giving us an extra charge of — =2

e Since inserting the item itself has a cost of 1, we 2chaurge 3 per insertion
* Consider charging 3 per insertion; 1 will go towards the insertion of the element, and the rest
2 are stored as credit
e 1 credit is attached to the element itself and the last one is attached to another element in
the table
¢ By doing this, whenever the table is filled completely we will have a credit on every single
element
¢ Now we can do the copying with the credits attached to the elements, so the credit
invariant is maintained
* For a sequence o of n inserts, we charge 3 per insert to maintain the credit invariant, so the
total cost is 3n, giving us an amortized cost of O(1)
o When we delete elements such that «(T) is too low, we reallocate the table to reduce the amount of
memory wasted, so that a(T") > ¢, a constant, and to keep the amortized cost per operation constant

1
— A naive approach would be to half the size of the table when «(7T) < 3

* This does ensure the load factor is at least 1/2, but if we have alternating insert and delete,
we will be doubling and halving the size constantly

n
* Consider a sequence o of 5 inserts, followed by an alternating sequence of 2 inserts and 2

n
deletes; now every 2 operations will give a cost of 5 80 we get Q(n?) complexity or Q(n) per

operation
1
— A better approach would be to half the table when «(T) < 1

* When we move to a smaller table, we will have half the space being filled
* Regardless of deletion or insertion, the load factor will be 1/2 after moving; this will simplify
analysis
* Consider a sequence o of inserts and deletes and use the accounting method
e After an expensive operation, the table will be half full
e The next expensive operation will be either an expansion or contraction
— For an expansion, we need another % insertions; the expansion costs n, so the averaged

out cost is 2 extra per insertion
— For a contraction, we need another 1 deletions; the contraction costs T so the averaged

cost is 1 extra per deletion
o Therefore we charge 3 per insertion and 2 per deletion
* The amortized cost is then O(1) per operation

	Lecture 14, Oct 25, 2023
	Amortized Analysis Example: Dynamic Tables

