Lecture 12, Oct 18, 2023

Disjoint Sets (Continued)

- Recall that we can optimize a disjoint set forest using weighted union (WU) and path compression (PC) techniques; what is the complexity of a sequence σ of n-1 UNION operations and m > n FIND operations?
- Define the function 2^{*n} :

 - $\begin{array}{l} -2^{*0} = 1 \\ -2^{*n+1} = 2^{2^{*n}} \text{ for } n \ge 0 \end{array}$
- 2 = 2 for $n \ge 0$ This function grows as: $2^{*0} = 1, 2^{*1} = 2, 2^{*2} = 4, 2^{*3} = 16, 2^{*4} = 65536, 2^{*5} \approx 1 \times 10^{19729}, \dots$ Define the inverse 2^{*n} as $\log^* n = \min\{k: 2^{*k} \ge n\}$, i.e. the first value of k such that 2^{*k} is greater than n
 - For all intents and purposes this is basically constant
- We claim that with WU and PC, executing σ takes $O(m \log^* n)$ time (proof is left as an exercise to the reader)
- Is there some sequence of σ that takes at least $m \log^* n$ time? Can we execute σ in O(m) time?
 - The real complexity is actually between the two not quite linear, but growing slower than $m\log^* n$
 - The actual complexity is $\Theta(m\alpha(m,n))$ where $\alpha(m,n)$ is the inverse Ackermann function
 - The lower bound of $\Omega(m\alpha(m,n))$ applies for any disjoint set data structure, not just the forest implementation
 - This took 25 years to derive