
Lecture 11, Oct 16, 2023
Disjoint Sets (Union/Find)

• Consider a situation where we have n distinct elements named 1, · · · , n; initially each element is in its
own set, S1 = { 1 } , . . . , Sn = { n }

– Each set is represented by some element x
• We want to support the operations:

– Union(Sx, Sy): create a new set S = Sx ∪ Sy and return the representative element of S
– Find(x): find the set containing the element x and return its representative element

• Using such a data structure we can test if two elements are in the same set by checking if Find(x) =
Find(y)

• Consider a sequence σ of m Find operations and n Union operations; we would like to analyze the
complexity

• We can implement this using a disjoint-set forest:
– Each set is represented by a tree, where the root node contains the set representative
– Each node contains one element
– Each non-root node points to its parent
– Since we only need a parent pointer, this can be efficiently implemented using an array of n

elements, with index i containing the parent of i
• The operations can be implemented as follows:

– To find, we simply traverse up the tree until we reach the root
– To merge, we find the root of both sets, and make one of them a child of the other
– With this, in the worst case we can get a complexity of O(mn) since merging sets can create a

chain of m nodes
• To improve this, we can perform weighted union (WU) by size, i.e. every time we merge, we make the

larger tree the parent
– With this, any tree T created during the execution of σ has height at most log2(n)

* Lemma: any tree T of height h created during the execution of σ has at least 2h nodes
• Base case: for h = 0, any tree of height 0 contains at least 20 = 1 node
• Inductive step: suppose the lemma holds for some h; we will show that it holds for h + 1

– The tree must have been created by merging two trees, one of height h and one of height
h + 1

– By the inductive hypothesis the height h tree has at least 2h elements
– Since the smaller tree is the child, the height h tree must be the child, so the height

h + 1 tree must be bigger and has more than 2h nodes
– Therefore overall the tree has at least 2h + 2h = 2h+1 nodes

* Since 2h ≤ |T | ≤ n, we have h ≤ log2 n
– Therefore the worst case cost is O(m log n)

• Another more effective technique is path compression (PC): after a Find(x) operation, before returning,
the parent of x is set to be the representative element of the set containing x, so that future Find
operations take a shorter path

– This increases the cost of Find, but makes future operations cheaper
– This is called amortization

Important

Differences between our data structure and the one described in CLRS:
• We assume that x and y in the Union operation are the representatives of their respective sets

(as opposed to CLRS which does not require this).
• In our analysis it is assumed that we have n elements and m Find operations (as opposed to m

total Find and Union operations in CLRS)
• In our disjoint set forest, we are using a weighted union heuristic, i.e. union-by-size (as opposed

to union-by-rank in CLRS)

1

	Lecture 11, Oct 16, 2023
	Disjoint Sets (Union/Find)

