Lecture 10, Oct 13, 2023

Randomized Quicksort

- We've seen algorithms that rely on the input being random to achieve a good average runtime; what if we make random choices inside the algorithm ourselves, so that even if the input is not random, we still get good performance?
- Suppose we want to sort a set of S distinct keys in increasing order; we can use recursive quick sort (RQS):
 - 1. If S is empty or has only one element, then return it
 - 2. Select a "pivot" key p uniformly at random among S (i.e. each key is equally likely to be selected as pivot)
 - 3. Compare the pivot with every element of S; split into two subsets S_{\leq} which are keys less than p, and $S_{>}$ which are keys greater than p
 - 4. Recursively sort S_{\leq} and $S_{>}$; output S_{\leq} , $p, S_{>}$ in order

• Note:

- Two keys are compared only if one of them is selected as a pivot
- Two keys are compared at most once, since a pivot cannot compare with keys after partitioning
- If two keys are split by a pivot, they will never be compared
- Consider fixing some input S with n keys; let C be the number of pairwise key comparisons done by RQS
 - In the worst case, we choose the biggest or smallest element of the set as the pivot each time, so each recursive call reduces n by 1
 - * $C = (n-1) + (n-2) + \dots + 2 + 1 = \Theta(n^2)$
 - What is the expected value of C? i.e. in the average case, over all the possible pivot selections, how many comparisons do we get?
 - Let $z_1 < z_2 < \cdots < z_i < \cdots < z_j < \cdots < z_n$ be the keys of S in ascending order
 - * Let $c_{ij} = 1$ if RQS compares z_i, z_j , or 0 otherwise
 - * We call this an *indicator random variable* * We have $C = \sum_{1 \le i < j \le n} c_{ij}$ So what is $\mathbb{E}[c_{ij}]$?

*
$$\mathbb{E}[c_{ij}] = 1 \cdot P(c_{ij} = 1) + 0 \cdot P(c_{ij} = 0) = 0$$

* We will later prove $c_{ij} = \frac{2}{j-i+1}$

* Substituting this back in and expanding the sum, we get that $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots \in O(\log n)$

• Consider the special case i = 1, j = n, then for i = 1, j = n, we have $\frac{2}{n}$ of them being compared

- These two keys will only be compared if the first or last element's chosen as pivot
- For any i and j = i + 1, the probability of comparison is guaranteed, since they are right next to each other
 - * The only way these elements are separated is if one of them becomes a pivot

- Consider the set of keys $Z_{ij} = \{z_i, \ldots, z_j\}$

- * For this set to stay on the same side, the pivot must be its range
- * This set has size j i + 1
- * Initially Z_{ij} is entirely contained in S
- * RQS keeps splitting S until it gets to subsets of size one or zero; as long as the pivot is not in the set, then the set will stay together and be untouched
- * Consider the first time RQS selects a pivot in Z_{ij}
 - If z_i or z_j is selected as the pivot, they will be compared once and never again
 - If $z_i then <math>z_i$ or z_j will never be compared
- * Therefore the probability of z_i , z_j being compared is the probability of selecting z_i or z_j as the pivot, given $p \in Z_{ij}$

The size of Z_{ij} is ¹/_{j-i+1} and we have two possibilities
So given any two keys, the probability of comparison is ²/_{j-i+1}
Hence, C is O(n log n)