
Lecture 10, Oct 13, 2023
Randomized Quicksort

• We’ve seen algorithms that rely on the input being random to achieve a good average runtime; what if
we make random choices inside the algorithm ourselves, so that even if the input is not random, we still
get good performance?

• Suppose we want to sort a set of S distinct keys in increasing order; we can use recursive quick sort
(RQS):

1. If S is empty or has only one element, then return it
2. Select a “pivot” key p uniformly at random among S (i.e. each key is equally likely to be selected

as pivot)
3. Compare the pivot with every element of S; split into two subsets S< which are keys less than p,

and S> which are keys greater than p
4. Recursively sort S< and S>; output S<, p, S> in order

• Note:
– Two keys are compared only if one of them is selected as a pivot
– Two keys are compared at most once, since a pivot cannot compare with keys after partitioning
– If two keys are split by a pivot, they will never be compared

• Consider fixing some input S with n keys; let C be the number of pairwise key comparisons done by
RQS

– In the worst case, we choose the biggest or smallest element of the set as the pivot each time, so
each recursive call reduces n by 1

* C = (n − 1) + (n − 2) + · · · + 2 + 1 = Θ(n2)
– What is the expected value of C? i.e. in the average case, over all the possible pivot selections,

how many comparisons do we get?
– Let z1 < z2 < · · · < zi < · · · < zj < · · · < zn be the keys of S in ascending order

* Let cij = 1 if RQS compares zi, zj , or 0 otherwise
* We call this an indicator random variable
* We have C =

∑
1≤i<j≤n

cij

– So what is E[cij ]?
* E[cij ] = 1 · P (cij = 1) + 0 · P (cij = 0) = 0
* We will later prove cij = 2

j − i + 1
* Substituting this back in and expanding the sum, we get that Hn = 1 + 1

2 + 1
3 + · · · ∈ O(log n)

• Consider the special case i = 1, j = n, then for i = 1, j = n, we have 2
n

of them being compared
– These two keys will only be compared if the first or last element s chosen as pivot
– For any i and j = i + 1, the probability of comparison is guaranteed, since they are right next to

each other
* The only way these elements are separated is if one of them becomes a pivot

– Consider the set of keys Zij = { zi, . . . , zj }
* For this set to stay on the same side, the pivot must be its range
* This set has size j − i + 1
* Initially Zij is entirely contained in S
* RQS keeps splitting S until it gets to subsets of size one or zero; as long as the pivot is not in

the set, then the set will stay together and be untouched
* Consider the first time RQS selects a pivot in Zij

• If zi or zj is selected as the pivot, they will be compared once and never again
• If zi < p < zj then zi or zj will never be compared

* Therefore the probability of zi, zj being compared is the probability of selecting zi or zj as
the pivot, given p ∈ Zij

1



• The size of Zij is 1
j − i + 1 and we have two possibilities

• So given any two keys, the probability of comparison is 2
j − i + 1

• Hence, C is O(n log n)

2


	Lecture 10, Oct 13, 2023
	Randomized Quicksort


