Lecture 2, Sep 20, 2023

Cash-Flow Analysis

Cash-Flow Diagrams

- Categories of cash flows:
 - Start of project:
 - * First (capital) cost: expense to build/buy/install
 - During the project:
 - * Revenue cost: receipts from sales of products or services
 - * Operation and maintenance (O&M) costs: expenses incurred on a regular basis (e.g. labour)
 - * Overhaul: major expenditure that occurs partway through the life of an asset
 - At the end of the project:
 - * Salvage value: money gained for sale or disposal of a product
 - * Scrap value: value of the materials that the item is made of
 - * Disposal costs: costs to dispose of the item
 - These are collectively referred to as project life-cycle costs
- A cash-flow diagram summarizes the timing and magnitude of cash-flows using arrows that go up/down
 - The x axis (which is discrete) shows the timing of cash flows and y axis shows their value
 - * Down is usually cash outflow, up is inflow
 - * Note the end of one period is the beginning of the next; a cash flow at the beginning of year 1 would be at time 0 (now)
 - Cash flows that occur during a period are assumed to occur at the end of the period
 - Interest is compounded once per period unless specified
 - Cash flows at the same time are summed

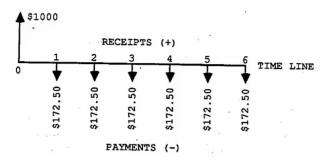


Figure 1: Example cash-flow diagram: Borrowing \$1000 from a bank and paying it back in 6 monthly installments of \$172.50 (1% interest per month)

- Cash-flows can be equivalent:
 - Mathematical equivalence: equivalence of cash-flows due to mathematical equivalence of time and money
 - * Two cash-flows, P_t at time t and F_{t+N} at time t + N are mathematically equivalent with respect to the interest rate i if $F_{t+N} = P_t (1+i)^N$
 - Market equivalence: a consequence of the ability to exchange one cash-flow for another at zero cost
 - * Once can exchange cash-flows between present and future amounts; *borrowing* to exchange a future cash-flow for a present one, and *lending/investing* to give up a present cash-flow for a future one
 - * Example: if a T-bill of \$1000 due to mature in 6 months is selling for \$990.10, then the "market" has agreed that the appropriate interest rate is 1% over 6 months
 - * The cash flow of 1000 6 months in the future is equivalent to a 990.10 right now
 - Decisional equivalence: due to indifferences on the part of decision maker among available choices * For a decision maker, two cash-flows P_t , F_{t+N} are equivalent if they are indifferent about the two

- * The interest rate is not a priori information but rather implied (which can be calculated)
- The market tells us what interest rate we should take based on the risk; mathematical equivalence allows us to use that interest rate to do the math; decisional equivalence allows us to use the math to decide what to take

Present Value of Cash-Flows

- There are 5 common types of regular cash flows:
 - Single payments (aka receipts): a single cash payment occurring at some time
 - Perpetuity: a cash flow of magnitude A occurring at regular intervals indefinitely
 - Annuity: like a perpetuity but only over N periods
 - Arithmetic gradient: like an annuity, but the amount increases by G each period (A the first time, A + G the second time, A + 2G the third time and so on)
 - Geometric gradient: like the arithmetic gradient but the amount grows by a factor of 1 + g each _ period
- Factor notation: to convert from cash flow Y to X, use the factor X = Y(X/Y, i, N) where i is the interest rate and N is the time period
 - X and Y are P (present), F (future), A (annuity), G (arithmetic gradient) or Geom (geometric gradient)
 - For the geometric gradient we also need the growth rate, so X = G(X/G, i, g, N)
 - Some factors have special names:
 - * F/P: compound amount factor
 - * P/F: present worth factor
 - * A/F: sinking fund factor
 - * F/A: series compound amount factor
 - * A/P: capital recovery factor
 - * P/A: series present worth factor
 - Reversing X and Y simply inverts the factor
- P/F, F/P factors can be derived by simply applying interest: $(F/P, i, N) = (1 + i)^N$
- $(P/A, i, N) = \frac{1}{i} \frac{1}{i(1+i)^N}$ This can be derived through a series sum or by noting that a perpetuity of amount A has present value $\frac{A}{i}$, since the amount of interest per period is A = Pi
- For an arithmetic gradient, P = A(P/A, i, N) + G(P/G, i, N) where $(P/G, i, N) = \frac{1}{i^2} \left(1 \frac{1 + iN}{(1 + i)^N} \right)$
 - The first part, A(P/A, i, N) is the value of the initial base annuity
 - The second part is the value of the growth
 - This can be derived by turning the arithmetic gradient into a series of annuities

-
$$P = G \sum_{k=1}^{N-1} \frac{(P/A, i, N-k)}{(1+i)^k}$$
 ignoring the annuity starting on year 1

•
$$(P/Geom, i, g, N) = \frac{1}{1+g}(P/A, i^0, N)$$
 where $i^0 = \frac{1+i}{i-g} - 1$
 $1 - \binom{1+g}{N}^N$

- Equivalently $(P/Geom, i, g, N) = \frac{1 \left(\frac{1-g}{1+i}\right)}{i-q}$
- Note for a geometric gradient cash flow, there is nothing at time 0, then at time 1 a cash flow of A, then at time 2 a cash flow of A(1+q) and so on

Examples

- Consider annuity that pays \$10 per month for 1 year. If interest is 1% per month compounded monthly, what is the equivalent continuous payment right now?
 - -P = 10(P/A, 1%, 12) = \$112.55

 $-P = \int_0^1 A e^{-r_{cc}t} dt \text{ and we can find } (1+1\%)^{12} = e^{r_{cc}} \implies r_{cc} = 11.94\%/\text{yr}$ $-\$112.55 = A \int_0^1 e^{-0.1194t} dt \implies A = \119.40yr^{-1}

• Determine the effective annual rate for an investment that earns 15% per year based on quarterly compounding for the first 4 months, then 11% per year based on continuous compounding for another 5 months

$$-\left(1+\frac{15\%}{4}\right)^{\frac{4}{3}}e^{11\%\cdot\frac{5}{12}}=\left(1+r_{eff}\right)^{\frac{9}{12}}$$

- A property was sold for \$10M. The buyer wants a VTB (vendor-take-back) mortgage for \$5M, with 4% interest and \$500k of principal paid yearly for 10 years; what is the present value to the seller at 10% interest per year?
 - VTB is if the buyer defaults, the seller gets the building back
 - The buyer first gets \$5M in year 0, then \$500k each year plus some interest each year
 - * As the year goes on the interest decreases, because the principal that the interest applies to decreases
 - * In year 1 the interest is $5000000\cdot4\%,$ in year 2 it's $4500000\cdot4\%$ and so on
 - * This is an arithmetic gradient with a negative gradient
 - We have $A = 4\% \times \$500000 = \$200000, G = -\$500000 \cdot 4\% = \20000
 - -P = 5000000 + (500000 + 200000)(P/A, 10%, 10) 20000(P/G, 10%, 10) = 8843370
 - * Note we had to add 200k to the annuity value because of the declining interest