Lecture 1, Sep 13, 2023

Interest Rates

- "Time Value of Money": borrowing money has a cost for the borrower; lending money should create value for the lender (investor/creditor)
- Factors impacting interest rates:
 - Inflation: higher expected inflation leads to increase in interest rates
 - *Credit (default) risk:* higher risk of the borrower not being able to pay back leads to higher interest rates
 - Liquidity risk: higher liquidity risk (not being able to access the invested funds during the investment) leads to higher interest rate
 - Maturity risk: longer term investments (longer maturity) increase other risks, leading to higher interest rates
- The interest might only be paid yearly, but the money is being made in real time!
- Two types of interest (assume compound unless stated otherwise):
 - Simple: interest applies only to original principal, e.g. GICs (Guaranteed Investment Certificates) * After N periods, amount owed is P(1 + Ni) where P is the principal, i is the interest rate
 - Compound: interest applies to principal and all interest, e.g. mortgages, credit card debt * After N periods, amount owed is $P(1+i)^N$
- We can also compound multiple times a year with a fraction of the interest; for m subperiods a year, the subperiod interest rate is $i_s = \frac{r}{m}$
 - At the end of the year we would have $F = P\left(1 + \frac{r}{m}\right)^m$ after all *m* subperiods
 - The more frequently you compound, the more interest you will earn, so to compare investments with different compound periods, we need an *effective interest rate*
- Effective interest rate (i_e) : the equivalent interest rate of an account that is compounded just once over the stated time periods $-i_e = \left(1 + \frac{r}{m}\right)^m - 1$ - As *m* increases, i_e increases and approaches a finite limit (known as *continuous compounding*) - For continuous compounding, $i_e = \lim_{m \to \infty} \left(1 + \frac{r}{m}\right)^m = e^r - 1$ * Note that the continuous interest rate has units of percent per time, while every other rate

 - - has units of percent (i.e. unitless)
- Example: given a mortgage rate of 5% (compounded semi-annually), how much interest will you pay on a \$100k mortgage in the first month?
 - $r_{s/s} = 2.5\%$ (semi-annual interest compounded semi-annually) $(1 + 2.5\%) = (1 + r_{m/m})^6$ solve to get an $r_{m/m} = 0.4124\%$

 - Therefore the interest per month is $100000 \times 0.4124\% = 412.4$

Present Value and Factor Notation

- The formulas can be reversed to calculate the present value: $PV = \frac{FV}{(1+i)^N}$
 - Money in the future is worth less, because you can't invest it; instead we calculate how much we would invest to get that amount in the future given some interest rate
 - In factor notation: $PV = FV(P/F, i, N) \implies (P/F, i, N) = \frac{1}{(1+i)^N}$
 - To calculate future value: $FV = PV(F/P, i, N) \implies (F/P, i, N) = (1+i)^N$