Lecture 8, Oct 3, 2023

Rotational Version of Newton's Laws

- Recall the momentum is p = mr.
- $\underline{h}_O = \underline{r} \times p$ is the angular momentum, or moment of momentum
- $\vec{h}_O = \vec{r} \times \vec{p} + \vec{r} \times \vec{p} = m\vec{r} \times \vec{r} + \vec{r} \times \vec{f} = \vec{r} \times \vec{f} = \vec{\tau}_O$ is the *torque*, or moment of force Note that when we talk about moments such as angular momentum or torque, we need some reference point O
 - Here O is assumed to be inertially fixed; if it moves, then $\underline{\tau}_O = \underline{h}_O + \underline{v}_O \times p$ where \underline{v}_O is the moment with respect to inertial space

•
$$f = p = p^{\circ} + \underline{\omega} \times p$$

 $\vec{}$ – We can think of this as the translational equation of motion

•
$$\underline{\tau}_O = \underline{h}_O^{\circ} = \underline{h}_O^{\circ} + \underline{\omega} \times \underline{h}_O$$

- We can think of this as the *rotational equation of motion*
- But this is not a law because it is derivable from the other laws and assumptions
- Impulse is defined as $\underline{i} = \int_{t}^{t_b} \underline{f} \, dt = \underline{p}_b \underline{p}_a$ • Rotational impulse is $\underline{j}_O = \int_t^{t_b} \underline{\tau}_O \, \mathrm{d}t = \underline{h}_{O,b} - \underline{h}_{O,a}$

Work and Energy

•
$$W = \int_{A}^{B} \vec{f} \cdot d\vec{r}$$
$$= \int_{A}^{B} m\vec{r} \cdot d\vec{r}$$
$$= m \int \frac{1}{2} dv^{2}$$
$$= \frac{1}{2} mv_{B}^{2} - \frac{1}{2} mv_{A}^{2}$$
$$= T_{B} - T_{A}$$

- $T_A, T_B \text{ are the kinetic energy; this is known as the principle of work and kinetic energy}$ $Note <math>v^2 = \vec{r} \cdot \vec{r}$ so $\frac{dv^2}{dt} = \frac{d\vec{r} \cdot \vec{r}}{dt} = 2\vec{r} \cdot \vec{r} = 2\vec{r} \cdot \vec{dt} = 2\vec{r}$
- A force \underline{f} is conservative iff $\vec{\int}_{P_a} \underline{f} \cdot d\underline{r} = \int_{P_b} \underline{f} \cdot d\underline{r}$ for any two paths P_a , P_b that have the same start and end points

- Equivalently,
$$\nabla \times \vec{f} = \vec{0}$$
 (no curl) or $\vec{f} = -\nabla V$ or $\oint \vec{f} \cdot d\vec{r} = 0$
- If $\vec{f} = -\nabla V$, then $\vec{f} \cdot d\vec{r} = -\nabla V \cdot d\vec{r} = -\frac{\partial V}{\partial x_1} dx_1 - \frac{\partial V}{\partial x_2} dx_2 - \frac{\partial V}{\partial x_3} dx_3 = dV$
- $\int_{-}^{B} \vec{f} \cdot d\vec{r} = -\int dV = V_A - V_B$, regardless of the path taken from A to B

- If we combine the above with the principle of work and kinetic energy, we see $V_A V_B = T_B T_A \implies$ $T_A + V_A = T_B + V_B$
 - This is the conservation of (total) energy under a conservative force field f, the sum of kinetic and potential energies, T + V, is conserved
 - * V is the potential energy
 - * T + V = E is the total (mechanical) energy