## Lecture 7, Sep 28, 2023

## Newton's Second Law in Noninertial Frames

- Kinematics was the study of the geometry of motion without regard for the laws of nature; now we move on to dynamics, where we attempt to describe the laws of nature
- We know that the law of inertia does not hold in an accelerating or rotating reference frame; what about Newton's second law?
- $\vec{f} = m\vec{a} = m\vec{r}$ , with the derivative taken with respect to some inertial frame  $\mathcal{F}_I$ 
  - In another frame  $\mathcal{F}_b$ ,  $\underline{f} = mv$ .

$$= m(\vec{v}^{\circ} + \vec{\omega}^{bI} \times \vec{v})$$
  
=  $m\vec{r}^{\circ\circ}$   
=  $m(\vec{r}^{\circ\circ} + 2\vec{\omega}^{bI} \times \vec{r}^{\circ} + \vec{\omega}^{bI^{\circ}} \times \vec{r} + \vec{\omega}^{bI} \times (\vec{\omega}^{bI} \times \vec{r}))$ 

- So in  $\mathcal{F}_{b}$ ,  $m\underline{r}^{\circ\circ} = \underline{f} m\left(2\underline{\omega}^{bI} \times \underline{r}^{\circ} \underline{\omega}^{bI^{\circ}} \times \underline{r} + \underline{\omega}^{bI} \times (\underline{\omega}^{bI} \times \underline{r})\right)$  We can see this broken down into the Coriolis, tangential, and centrifugal forces



Figure 1: Diagram for the example problem.

- Example: Consider a spool with a bob attached to the end of the wire; if the spool is rotating in the opposite direction that the wire is being wound, the spool will actually unwind
  - Given that  $\Omega$  is constant, what is  $\rho(t)$  and  $f_T(t)$ ?
  - Define our reference frames as  $\mathcal{F}_I$ , the inertial frame, and  $\mathcal{F}_b$ , a rotation reference frame with  $\underline{b}_I$ parallel to the string at all times

- This gives 
$$\mathbf{r} = \mathbf{\mathcal{F}}_{b}^{T} \begin{bmatrix} \rho \\ a \\ 0 \end{bmatrix} = \mathbf{\mathcal{F}}_{b}^{T} \mathbf{r}_{b}$$
 and  $\mathbf{f}_{T} = \mathbf{\mathcal{F}}_{b}^{T} \begin{bmatrix} -f_{T} \\ 0 \\ 0 \end{bmatrix} = \mathbf{\mathcal{F}}_{b}^{T} \mathbf{f}_{b}$ 

- Since  $\mathcal{F}_b$  is not an inertial frame, we must use the equation of motion for a rotating frame that we derived above

$$-f_T = m(\vec{r}^{\circ\circ} + 2\vec{\omega}^{bI} \times \vec{r}^{\circ} + \vec{\omega}^{bI^{\circ}} \times \vec{r} + \vec{\omega}^{bI} \times (\vec{\omega}^{bI} \times \vec{r}))$$

-  $\vec{I}t$  is most convenient to express all quantities in frame  $\mathcal{F}_b$ : \*  $bI \quad \mathbf{T} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 

• 
$$\dot{\theta} = \Omega + \frac{\dot{\rho}}{a}$$
  
\*  $\dot{r}_b = \begin{bmatrix} \dot{\rho} \\ 0 \\ 0 \end{bmatrix}, \ddot{r}_b = \begin{bmatrix} \ddot{\rho} \\ 0 \\ 0 \end{bmatrix}$ 

- If we substitute these quantities back in, we get  $\begin{cases} -m\ddot{\rho} - m\rho\omega^2 = f_T \\ \rho\dot{\omega} + 2\dot{\rho}\omega - a\omega^2 = 0 \end{cases}$  where  $\omega = \Omega + \frac{\dot{\rho}}{a}$ \* Solving the DE in the second equation, we get  $\rho(t) = a\Omega t$ \* Substitute back in to get  $f_T = 4ma\Omega^3 t$ - The idealized math save that the graph of the second equation

- The idealized math says that the spool will keep unwinding, however in reality drag will eventually match the centrifugal force, causing the spool to no longer unwind