Lecture 4, Sep 19, 2023

Solving the Sundial

Figure 1: A sundial.

Figure 2: The geometry of the sundial.

- A sundial's upper edge, the *style*, is made parallel to the Earth's axis of rotation, so the sun casts a shadow on the plane of the sundial; how should we draw the markings on the sundial to indicate time?
- We will establish a coordinate system with $\underline{d}_1, \underline{d}_3$ being in the plane of the sundial
 - The shadow cast by the style is $\underline{s} = s_1 \underline{d}_1 + s_2 \underline{d}_3$
 - The angle the shadow makes with d_1 is χ , so $\tan \chi = \frac{s_3}{s_1}$
 - The shadow \underline{s} , style \underline{a} , and the sun's rays \underline{r} are in the same plane, so we have $\underline{s} = c\underline{a} + \underline{r}$ (since we don't care about the magnitude, we only need 1 coefficient)

- Therefore
$$s_1 \underline{d}_1 + s_3 \underline{d}_3 = c \underline{a} + \underline{r} = \mathbf{\mathcal{F}}_d^T \begin{bmatrix} s_1 \\ 0 \\ s_3 \end{bmatrix} = s_1 \mathbf{1}_1 + s_3 \mathbf{1}_3$$

- We define another frame, the heliocentric frame \mathcal{F}_h , which is aligned with \mathcal{F}_d at noon (when the rotation angle of the earth, $\zeta = 0$)
 - Consider the coordinate system formed by $\underline{a}, \underline{h}_3 \times \underline{a}$ and \underline{h}_3
 - The angle α between the sun's rays \underline{r} and the style/Earth axis \underline{a} is seasonally dependent
 - * We can get break down \underline{r} into \underline{a} and a perpendicular component: $\underline{r} = \cos \alpha \underline{a} \sin \alpha \underline{h}_3 \times \underline{a}$

*
$$\underline{a} = \mathcal{F}_{d}^{T} \boldsymbol{a} = \mathcal{F}_{d}^{T} \begin{bmatrix} \cos \lambda \\ \sin \lambda \\ 0 \end{bmatrix}$$
 where λ is the latitude
- $\underline{r} = \mathcal{F}_{h}^{T} \boldsymbol{r}_{h} = \mathcal{F}_{h}^{T} (\cos \alpha \boldsymbol{a} - \sin \alpha \mathbf{1}_{3}^{\times} \boldsymbol{a})$

- When the Earth rotates, the frame \mathcal{F}_d rotates about the axis \underline{a} by ζ , so $C_{dh} = \cos \zeta \mathbf{1} + (1 \cos \zeta) a a^T \sin \zeta a^{\times}$
- Now we have \underline{a} and \underline{r} in frame $\mathbf{\mathcal{F}}_d$, we can use the equation before: $c\underline{a} + \underline{r} = \mathbf{\mathcal{F}}_d^T \begin{bmatrix} s_1 \\ 0 \\ s_1 \end{bmatrix}$

– This gives us 3 equations, when solved we get $\tan \chi = \frac{s_3}{s_1} = \sin \lambda \tan \zeta$

• In general, we want to express everything in the same frame to solve a problem; some vectors are more easily expressed in certain frames than others

Rotation Representations

- We can represent any rotation with a rotation matrix, but it is overspecified since there are 9 components
- Using Euler's theorem, we can completely specify a rotation by the axis-angle pair (a, ϕ) , which has 3 components only (since a is normalized)
- We can also perform a series of 3 principal axis rotations; these are known as the Euler angles
 - Any sequence of 3 axes works, as long as you don't have a sequence of 2 consecutive identical rotations
 - e.g. $\boldsymbol{C} = \boldsymbol{C}_3(\theta_3) \boldsymbol{C}_1(\theta_2) \boldsymbol{C}_3(\theta_1)$ is a 3-1-3 set of rotations
 - * The 3-1-3 set is the one that Euler used
 - In total there are $3 \times 2 \times 2 = 12$ different sets of rotations
 - Given C, we can't always find a unique sequence of Euler angles that make up the rotation; this is referred to as a *singularity*
 - * e.g. with the 3-1-3 set, if $\theta_2 = 0$ then we won't be able to distinguish θ_3 from θ_1
 - * This is why in aerospace typically 1-2-3 or 3-2-1 is used; however any sequence has a singularity, it's just for some sequences the singularity occurs further from the reference point

Kinematics

- Kinematics is the geometry of motion, with no regard for the laws of nature
- Rates of change like \underline{v} depend on the frame of reference that they are viewed from; when we take a derivative we must note the reference frame

Figure 3: Vector of a fixed length in rotation.

- Consider a vector \underline{b} of fixed length rotating about a fixed axis \underline{a} with some rate $\dot{\theta}$
 - Since \underline{b} is constant length, $d\underline{b}$ is normal to \underline{b} and \underline{a} , so $d\underline{b} \propto \underline{a} \times \underline{b}$
 - Suppose that in time dt, \underline{b} rotated $d\theta$; then $||d\underline{b}|| = ||\underline{b}|| \sin \phi d\theta$
 - If we let $\vec{\omega} = \vec{a}\dot{\theta}$, then $d\theta = \|\vec{\omega}\| dt$ and so $\|d\vec{b}\| = \|\vec{\omega} \times \vec{b}\| dt$

- Therefore we have
$$d\underline{b} = \underline{\omega} \times \underline{b} dt$$
 and so $\frac{d\underline{b}}{dt}\Big|_{\mathcal{F}_a} = \underline{\omega} \times \underline{b}$

- We will use the notation that $\underline{b}_{1} = \frac{d\underline{b}_{1}}{dt}\Big|_{\underline{\mathcal{F}}_{a}}$ and $\underline{b}_{1}^{\circ} = \frac{d\underline{b}_{1}}{dt}\Big|_{\underline{\mathcal{F}}_{b}}$
- Since the axes of reference frames have constant length, we can use this for all 3 axis vectors

- We denote
$$\mathcal{F}_{b}^{T^{*}} = \underline{\omega}^{ba} \times \mathcal{F}_{b}^{T} = [\underline{\omega}^{ba} \times \underline{b}_{1} \quad \underline{\omega}^{ba} \times \underline{b}_{2} \quad \underline{\omega}^{ba} \times \underline{b}_{3}]$$

* The $\underline{\omega}^{ba}$ is the angular velocity of \mathcal{F}_{b} with respect to \mathcal{F}_{a}
- $\mathcal{F}_{b}^{T^{*}} = \underline{\omega}^{ba} \times \mathcal{F}_{b}^{T} = \mathcal{F}_{b}^{T} \omega^{ba^{\times}} \Longrightarrow \mathcal{F}_{b} \cdot \mathcal{F}_{b}^{T^{*}} = \mathcal{F}_{b} \cdot \mathcal{F}_{b}^{T} \omega^{ba^{\times}} \Longrightarrow \omega^{ba^{\times}} = \mathcal{F}_{b} \cdot \mathcal{F}_{b}^{T^{*}}$
• $\omega^{ba^{\times}} = \mathcal{F}_{b} \cdot \mathcal{F}_{b}^{T^{*}}$ becomes our definition for angular velocity of frame *b* with respect to *a* in general