
Lecture 22, Nov 30, 2023
Modal Analysis

• Consider first the unforced equation of motion, Mq̈ + Kq = 0
• Substituting in the test solution q0eλt gives us (λ2M + K)q0 = 0

– Clearly, this is satisfied for the trivial solution q0 = 0, but we want some non-quiescent solution
– For q0 to be nonzero, we need det(λ2M + K) = 0; this resembles an eigenproblem where instead

of identity we have M
– There will be multiple such λ and q0

• λ2
α are then the eigenvalues and qα the eigenvectors; det(λ2M + K) = 0 is the characteristic equation

or eigenequation
– In general the eigenequation gives us an n-th order polynomial in λ2

– Consider multiplying both sides by the Hermitian of qα: λ2
αqH

α Mqα + qH
α Kqα = 0

* M is real and symmetric, so qH
α Mqα is real; furthermore its positive-definiteness means this

is also always greater than 0
* K is real and symmetric, so qH

α Kqα is also real

* λ2
α = − qH

α Kqα

qH
α Mqα

so indeed λ is real

* Further, K > 0 =⇒ λ2
α < 0, or λα = ±jωα

* By extension, the qα are real
• Do qα form a basis?

– Consider λ2
αqT

β Mqα + qT
β Kqα = 0 and λ2

βqT
α Mqβ + qT

α Kqβ = 0
– Subtracting the two equations gives (λ2

α − λ2
β)qT

α Mqβ = 0 (note we can do this since the terms
are scalars)

– Then qT
α Mqβ =

{
> 0 λ2

α = λ2
β

0 λ2
α ̸= λ2

β

– WLOG normalize the q vectors with respect to M , then qT
α Mqβ = δαβ =⇒ QT MQ = 1 where

Q =
[
q1 · · · qm

]
* Note we might get repeated eigenvalues, but we can always diagonalize due to the symmetry

of M

– Plugging back into the first equation, λ2
αδαβ + qT

α KqT
β =⇒ qT

α KqT
β =

{
−λ2

α α = β

0 α ̸= β

– So we can also write QT KQ = −Λ2

• Let q(t) =
n∑

β=1
qβηβ(t)

–
n∑

β=1
Mqβ η̈β +

n∑
β=1

Kqβηβ = f

=⇒
n∑

β=1
qT

α Mqβ η̈β +
n∑

β=1
qT

α Kqβηβ = qT
α f

=⇒
n∑

β=1
δαβ η̈β +

n∑
β=1

−λ2
αηβ = qT

α f

=⇒ η̈α − λ2
αηα = fα

– We have uncoupled the system of differential equations
– qβ are the mode shapes, and ηβ(t) are the modal coordinates; qαηα is a mode of vibration
– Note that if K were positive definite, we would get all negative λ2

α, giving oscillatory motion; then
ω2

α = −λ2
α are the natural frequencies of vibration
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Double Pendulum Revisited

• Recall: M = ml2
[
2 1
1 1

]
, K = mgl

[
2 0
0 1

]
• Clearly K is positive definite here, so let’s write λ2 as −ω2

• We want to solve det(−ω2
αM + K) = 0

• Let µ2
α = −ω2

α

l

g
, so that det

[
−2µ2

α + 2 −µ2
α

−µ2
α −µ2

α + 1

]
= 0

• Expanded: µ3 − 4µ2 + 2 = 0 =⇒ µ2 = 2 ±
√

2

• Therefore the modal frequencies are ω1 =
√

(2 −
√

2)g

l
, ω2 =

√
(2 +

√
2)g

l

• Solve the eigenequation to get θ1,2

θ1,1
=

√
2 and θ2,2

θ2,1
= −

√
2

• For each of the modes, at any time, the ratio of the coordinates remains the same
• Notice that in the second mode, we have a node – a point that does not move

– In general, for an n degree of freedom system, we will have n modes; mode n will have n − 1 nodes

Figure 1: Vibrational modes of the double pendulum.
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