
Lecture 21, Nov 28, 2023
Vibrations: Equation of Motion

• Consider a system of N rigid bodies and particles, described by a set of n generalized coordinates qk

• Consider a potential V , then the forces are given by f = − ∂V

∂qk
, which are zero at equilibrium

• WLOG choose the equilibria to be when qk = 0, then we can expand the potential about the equilibrium:

– V (q) = V0 +
∑

k

∂V

∂qk
qk + 1

2
∑
k,j

∂2V

∂qj∂qk
qjqk

– We can take V0 = 0 since in general the reference potential level does not matter; at an equilibrium
we also have ∂V

∂qk
= 0

– Therefore V = 1
2

∑
k,j

∂2V

∂qj∂qk
qjqk

• We may express V = 1
2qT Kq for small disturbances

– K is a matrix of second partials, known as the stiffness matrix
– Due to symmetry of second partials, K is symmetric (but note it is not necessarily definite)

• For kinetic energy, T = 1
2

N∑
i=1

(
miv

T
i vi + ωT

i Iiωi

)
– vi = ṙi(q1, . . . , qk) =

n∑
k=1

∂ri

∂qk
q̇k =

n∑
k=1

aikq̇k

– ω×
i = −ĊiC

T
i =

∑
k

−∂Ci

∂qk
CT

i q̇k =
∑

k

b×
ikq̇k =⇒ ωi =

∑
k

bikq̇k

– We will assume that both have no dependence on q

– Therefore T = 1
2

∑
j,k

[∑
i

mia
T
ijaikq̇j q̇k +

∑
i

bT
ijIibikq̇j q̇k

]
• Let Mjk =

∑
i

mia
T
ijaij +

∑
i

bT
ijIbij , then T = 1

2
∑
j,k

Mjkq̇j q̇k = 1
2 q̇T Mq̇

– M is symmetric and positive definite, because for any nonzero q̇, we expect some kind of positive
kinetic energy

• The non-conservative forces are δW
⌢

△ =
∑

k

fkδqk = δqT
k f

• Using Hamilton’s principle, we seek to find δ

� t2

t1

L dt −
� t2

t1

δW
⌢

△ dt = 0

– δ

� t2

t1

L dt −
� t2

t1

δW
⌢

△ dt =
� t2

t1

[
δ

(
1
2 q̇T Mq̇ − 1

2qT Kq

)
+ δW

⌢
△

]
dt

=
� t2

t1

[(
δq̇T Mq̇ − δqT Kq

)
+ δqT f

]
dt

=
� t2

t1

(
−δqT Mq̈ − δqT Kq + δqT f

)
dt

=
� t2

t1

δqT (−Mq̈ − Kq + f) dt

– Note we used integration by parts and eliminated the boundary term as in the derivation for the
Euler-Lagrange equation

– Setting this to zero, we get that the term inside the brackets must be zero
• Therefore the equation of motion is Mq̈ + Kq = f(t)

– Notice the similarity to the 1 dimensional spring-mass system mẍ + kx = f
– If we had linear damping, we could add a Dq̇ term, where D is symmetric and positive semi-definite
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– We could also add a Gq̇ term, where G is a skew-symmetric matrix representing gyric effects
– Finally we can add a Hq term where H is a skew-symmetric matrix representing circulatory

effects (follower forces, e.g. lift and drag)
– This is the general form for a linear system

• Note that to obtain the linear system, we need to find the kinetic and potential energies to second order

Example: Double Pendulum

• Consider a double pendulum with masses m1 = m2 = m, angles θ1, θ2 from vertical, and link lengths
l1 = l2 = l

• T = 1
2m1v2

1 + 1
2m2v2

2

– v1 = l1θ̇1
– For v2, we need to add the velocities of the first mass and the second mass relative to the first

mass, which are in general not in the same direction
– The relative speed is v′

2 = l2θ̇2, which forms a triangle with v1
– Using the cosine law: v2

2 = v2
1 +(v′

2)2 −2v1v′
2 cos(π − (θ2 −θ1)) = l2

1θ̇2
1 + l2

2θ̇2
2 +2l1l2θ̇1θ̇2 cos(θ2 −θ1)

– T = 1
2ml2 (

2θ̇2
1 + θ̇2

2 + 2θ̇1θ̇2 cos(θ2 − θ1)
)

* We can expand cos(θ2 − θ1) = 1 − 1
2(θ2 − θ1)2 to second order

* However since we already have a θ̇1θ̇2 multiplying this, it will be 4th order, which we can
ignore

– Therefore T = 1
2ml2 (

2θ̇2
1 + θ̇2

2 + 2θ̇1θ̇2
)

• This gives T = 1
2 θ̇T Mθ̇ where M =

[
2ml2 ml2

ml2 ml2

]
= ml2

[
2 1
1 1

]
• V = mgl(1 − cos θ1) + mgl(1 − cos θ2 + 1 − cos θ1)

– Expanding this to second order, we get 1
2mgl(2θ2

1 + θ2
2)

– Therefore V = 1
2θT Kθ where K = mgl

[
2 0
0 1

]
• The equation of motion is therefore Mθ̈ + Kθ = 0
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