Lecture 20, Nov 23, 2023

Analysis of a Spinning Top

Figure 1: Precession of a spinning top.

- Consider a general spinning top spinning about its axis of symmetry, with the contact point fixed; what is the rate of the precession of h about the vertical axis?
- In general we have 2 contributors to \underline{h} : the spin of the top itself and the wobbling; we will assume that the top is spinning fast enough that almost all h lies in the spinning of the top itself
- We also assume the angular velocity has constant magnitude
- We want $\frac{d\phi}{dt}$, where $d\phi$ is a small change to the angle of the projection of \underline{h} onto the horizontal plane $-d\phi = \frac{dh}{h\sin\theta}$ where θ is the angle made with the vertical axis (note θ is called the *nutation angle*) $h = J_a \nu$ where ν is the spin rate and J_a is the axial moment of inertia
- The change in h is due to the only externally applied force gravity
 - Gravity acts at the centre of mass, which is a distance r from O
 - Therefore it exerts a torque $\underline{\tau} = mgr\sin\theta = \underline{h}$.

- The magnitude is then $\tau = mgr\sin\theta = \frac{dh}{dt}$ • Substitute relevant quantities: $\frac{d\phi}{dt} = \frac{\frac{dh}{dt}}{J_a\nu\sin\theta} = \frac{mgr\sin\theta}{J_a\nu\sin\theta} = \frac{mgr}{J_a\nu}$

- This is the precession rate

• To analyze the full motion, we will use the Lagrangian formulation; consider a 3-1-3 set of Euler angles ϕ, θ, ψ where the 3-axis is the vertical axis

- Recall:
$$\boldsymbol{\omega} = \boldsymbol{S}(\theta, \psi) \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} \dot{\phi} \sin \theta \sin \phi + \dot{\theta} \cos \psi \\ \dot{\theta} \sin \theta \cos \psi - \theta \sin \psi \\ \dot{\phi} \cos \theta + \dot{\psi} \end{bmatrix}$$

- The kinetic energy is $T = \frac{1}{2} \boldsymbol{\omega}^T \boldsymbol{J} \boldsymbol{\omega}$, where $\boldsymbol{J} = \begin{bmatrix} J_t & & \\ & J_t & \\ & & J_a \end{bmatrix}$ (assuming symmetry)

* We will call the transverse moments of inertial J_t and the axial one J_a - Expanding this out: $T = \frac{1}{2}J_t(\dot{\theta}^2 + \phi^2 \sin^2 \theta) + \frac{1}{2}J_a(\dot{\phi}\cos\theta + \dot{\psi})^2$ - The potential energy is taken at the centre of mass and so $V = mgr\cos\theta$ • Notice L is not dependent on ϕ and ψ , so $\frac{\partial L}{\partial \dot{\phi}}$ and $\frac{\partial L}{\partial \dot{\psi}}$ are constant (these are the angular momenta

about the two axes)

- Note these are called *cyclic* or *ignorable* coordinates
- $-\frac{\partial L}{\partial \dot{\phi}} = J_t \dot{\phi} \sin^2 \theta + J_a \cos \theta (\dot{\phi} \cos \theta + \dot{\psi}) = J_t \omega_{\phi}$ $- \frac{\overleftarrow{\partial L}}{\partial \dot{\psi}} = J_a(\dot{\phi}\cos\theta + \dot{\psi}) = J_a\nu$

- With the assumption that $\dot{\phi} \ll \dot{\psi}$ we can write the first equation as $J_t \dot{\phi} \sin^2 \theta + J_a \nu \cos \theta = J_t \omega_{\phi}$ • Finally the equation in θ : $J_t \ddot{\theta} + (J_a - J_t) \phi^2 \sin \theta \cos \theta + J_a \dot{\phi} \dot{\psi} \sin \theta - mgr \sin \theta = 0$

- We see that even with no non-conservative forces, the nutation angle still changes
- The faster that the top is spinning, the less the nutation changes, which is why normally it seems almost constant to us

Figure 2: Types of precession of the axis of the top.