
Lecture 19, Nov 21, 2023
Spin Stability of Rigid Bodies

• Consider a system with no external torque, spinning at a constant nominal rate ω =

0
ν
0

; under what

conditions is this system stable?

• Consider a small perturbation, such that ω(t) = ω0 + ∆ω(t) where ∆ω(t) =

∆ω1
∆ω2
∆ω3


• Plugging into Euler’s equations:


I1∆ω̇1 − (I2 − I3)(ν + ∆ω1)∆ω3 = 0
I2∆ω̇2 − (I3 − I1)∆ω3∆ω1 = 0
I3∆ω̇3 − (I1 − I2)(ν + ∆ω2) = 0

– After linearizing:


I1∆ω̇1 − (I2 − I3)ν∆ω3 = 0
I2∆ω̇2 = 0
I3∆ω̇3 − (I1 − I2)ν∆ω1 = 0

– ∆ω2 is then constant, so it is always stable
– Taking the derivative of the first equation and substituting in ∆ω̇3, we can get a differential

equation for ∆ω1

– ∆ω̈1 + (I2 − I3)(I2 − I1)
I1I3

ν2∆ω1 = 0 =⇒ ∆ω̈1 + β2∆ω1 = 0
* Note we could do the same to the second equation and we would get something in the exact

same form, with the same β2

– This is now an oscillator, so for stability we need β2 > 0; β2 ≤ 0 makes it unstable
• For β2 > 0 we need I2 − I3 and I2 − I1 to have the same sign, for a rotation about the 2 axis to be

stable
– This requires either I2 > I1, I3 or I2 < I1, I3 – it has to be the major (largest inertia) or minor

(smallest inertia) axis, but not the intermediate axis

• From the equation of motion: Iω̇ + ω×Iω = 0 =⇒ ωT Iω̇ = 0 =⇒ d
dt

(
1
2ωT Iω

)
= 0

– Note the ωT ω× cancels
– Integrating this, we get 1

2ωT Iω = T is a constant – this is the rotational kinetic energy

– In the principal axis frame, expanding this out we get ω2
1

2T
I1

+ ω2
2

2T
I2

+ ω2
3

2T
I3

= 0

– Geometrically, means that ω must lie on the surface of an ellipsoid – the energy ellipsoid
• Multiplying instead by ωT I, we have ωT I2ω̇ + ωT Iω×Iω = 0 =⇒ ωT I2ω̇ = 0

– Note zT ω×z = 0 for any skew-symmetric ω× (since it is a scalar, and if you transpose it you get
its negative)

– Doing the same and integrating gives us ωT I2ω = h2, another constant – this is the square of the
angular momentum

– ω2
1

h2

I2
1

+ ω2
2

h2

I2
2

+ ω2
3

h2

I2
3

= 0

– Geometrically this gives us yet another ellipsoid for ω – the momentum ellipsoid

• Since ω has to be on both ellipsoids, it must stay on their intersection – these intersection lines are
called polhodes

– Due to the squaring of I, the momentum ellipsoid will usually appear more stretched out than the
energy ellipsoid

– Specifying the energy and angular momentum initial conditions choose a pair of polhodes; a third
initial condition is needed to solve for the angular momentum as a function of time

– For a pure spin about the minor axis, the momentum ellipsoid is entirely contained within the
energy ellipsoid, so the only intersections are the top and bottom points
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Figure 1: Intersection of the energy and momentum ellipsoids.

Figure 2: The energy and momentum ellipsoids with polhodes.

* With a small perturbation, the momentum ellipsoid increases slightly in size, so we get a
polhode near the pole, which is a small circle; since the angular momentum stays within the
circle, this means we are stable

– For a pure spin about the major axis, the energy ellipsoid is entirely contained within the momentum
ellipsoid

• Notice T = 1
2ωT Iω so ∇ωT = Iω = h

– Therefore h is always normal to the energy ellipsoid, and moreover it is fixed in inertial space
since there are no external torques

– We can interpret this as the energy ellipsoid “rolling” on the invariable plane
* This is because T = 1

2ωT Iω = 1
2ωT h is constant, so the projection of

⃗
ω onto

⃗
h is constant –

the tip of
⃗
ω must lie on a plane normal to

⃗
h

– As we roll the ellipsoid, ω remains on both the surface of the energy ellipsoid and the invariable
plane

– This is known as Poinsot’s Geometric Interpretation
– The curve traced out on the invariable plane is known as the herpolhode
– Since the energy ellipsoid exists in the principal axis frame, which is a body-fixed frame, the

motion of the energy ellipsoid is the motion of the body

• In real life however, since any body dissipates energy, Ṫ < 0, so a minor axis spin will slowly shift
towards a major axis spin; as long as the system can lose energy, minor axis spins are unstable

– The major axis spin is asymptotically stable since the energy and momentum ellipsoids must
intersect, so at this point the energy ellipsoid can’t spin more
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Figure 3: Poinsot’s construction, in German for some reason.
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