Lecture 18, Nov 16, 2023

Dynamics of Rigid Bodies

Momentum of Rigid Bodies

- Consider a rigid body R and some inertial reference point $O_{\mathfrak{I}}$
 - Each differential mass element dm has momentum $dp = \overrightarrow{r} dm$
 - Therefore the overall momentum is $\vec{p} = \int_R \vec{r} \, dm$
- Consider some reference point O fixed to the body, and let ρ be the position of a mass element relative to O

 - $-\vec{r} = \vec{v}_O + \vec{\rho} = \vec{v}_O + \vec{\rho}^\circ + \vec{\omega} \times \vec{\rho}$ But $\vec{\rho}$ is fixed as seen in a body-relative frame, so $\vec{\rho}^\circ = 0$ (unless the body is deformable)

$$- \underline{p} = \int_{R} (\underline{v}_{O} + \underline{\omega} \times \underline{\rho}) \, \mathrm{d}m = \int_{R} \underline{v}_{O} \, \mathrm{d}m - \int_{R} \underline{\rho} \times \underline{\omega} \, \mathrm{d}m = m \underline{v}_{O} - \left(\int_{R} \underline{\rho} \, \mathrm{d}m\right) \times \underline{\omega}$$

• Let
$$\underline{c}_O = \int_B \rho \, \mathrm{d}m$$
 be the first moment of mass (aka first moment of inertia), then $\underline{p} = m\underline{v}_O - \underline{c}_O \times \underline{\omega}$

- Note that \underline{c}_O has a subscript since it is computed with respect to O
 - Expressed in a body frame $\boldsymbol{\mathcal{F}}_{b}, \, \boldsymbol{p} = m \boldsymbol{v}_{O} \boldsymbol{c}_{O}^{\times} \boldsymbol{\omega}$ * Note c_O is a constant in \mathcal{F}_b

• For angular momentum,
$$d\underline{h}_O = \underline{\rho} \times d\underline{p} = \underline{\rho} \times (\underline{v}_O - \underline{\rho} \times \underline{\omega}) dm \implies \underline{h}_O = \underline{c}_O \times \underline{v}_O - \int_R \underline{\rho} \times (\underline{\rho} \times \underline{\omega}) dm$$

- In
$$\boldsymbol{\mathcal{F}}_{b}, \boldsymbol{h}_{O} = \boldsymbol{c}_{O}^{\times} \boldsymbol{v}_{O} - \int_{R} \boldsymbol{\rho}^{\times} \boldsymbol{\rho}^{\times} \boldsymbol{\omega} \, \mathrm{d}m$$

= $\boldsymbol{c}_{O}^{\times} \boldsymbol{v}_{O} + \left(-\int_{R} \boldsymbol{\rho}^{\times} \boldsymbol{\rho}^{\times} \, \mathrm{d}m\right) \boldsymbol{\omega}$
= $\boldsymbol{c}_{O}^{\times} \boldsymbol{v}_{O} + \boldsymbol{J}_{O} \boldsymbol{\omega}$

$$- J_{O} = -\int_{R} \boldsymbol{\rho}^{\times} \boldsymbol{\rho}^{\times} dm \text{ is the second moment of mass, or the inertia matrix} * Note J_{O} is a second order tensor; in vector form, $\underline{h}_{O} = \underline{c}_{O} \times \underline{v}_{O} + J_{O} \cdot \underline{\omega}$
* $J_{O} = \int_{R} (\boldsymbol{\rho}^{2} \mathbf{1} - \boldsymbol{\rho} \boldsymbol{\rho}^{T}) dm$$$

- Let \boldsymbol{s} be any vector, then $\boldsymbol{s}^T \boldsymbol{J}_O \boldsymbol{s} = -\boldsymbol{s}^T \left(\int_R \boldsymbol{\rho}^{\times} \boldsymbol{\rho}^{\times} \, \mathrm{d}m \right) \boldsymbol{s}$ $= -\int_{\mathcal{D}} \boldsymbol{s}^T \boldsymbol{\rho}^{\times} \boldsymbol{\rho}^{\times} \boldsymbol{s} \, \mathrm{d}m$ $= \int_{R} (\boldsymbol{\rho}^{\times} \boldsymbol{s})^{T} (\boldsymbol{\rho}^{\times} \boldsymbol{s}) \, \mathrm{d}m$ $=\int_{R} \| \boldsymbol{\rho}^{ imes} \boldsymbol{s} \|^2 \, \mathrm{d} m$

- * There will always be some ρ that is not parallel to \underline{s} for any 3D body, so this integral is always positive for a nonzero s_{i}
- * Therefore J_O is symmetric positive definite (hence why we include a minus sign in the definition)
- A second-order tensor $\vec{D} = \vec{ab}$ is defined such that $\vec{D} \cdot \vec{v} = (\vec{ab}) \cdot \vec{v} = \vec{a}(\vec{b} \cdot \vec{v})$ In matrix form, $\begin{bmatrix} \boldsymbol{p} \\ \boldsymbol{h}_O \end{bmatrix} = \begin{bmatrix} m\mathbf{1} & -\mathbf{c}_O^{\times} \\ \mathbf{c}_O^{\times} & \mathbf{J}_O \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_O \\ \boldsymbol{\omega} \end{bmatrix}$, where $\boldsymbol{M} = \begin{bmatrix} m\mathbf{1} & -\mathbf{c}_O^{\times} \\ \mathbf{c}_O^{\times} & \mathbf{J}_O \end{bmatrix}$ is the mass matrix, which is also symmetric positive definite
- If we choose $O = \Phi$, then $\int_{D} \underline{r} \, \mathrm{d}m = 0$, so $\underline{c} = 0$ $- \boldsymbol{p} = m \boldsymbol{v}_O$

 $-h_{\mathbf{O}} = J_{\mathbf{O}}\omega = I\omega$, where we denote I as the inertia matrix about the centre of mass

• Consider two inertia matrices J_A, J_B relative to points A, B; for a differential mass element, denote

position relative to A by \underline{a} , position relative to B by \underline{b} and the relative position between A and B is ρ^{BA}

-
$$\boldsymbol{a} = \boldsymbol{b} + \boldsymbol{\rho}^{BA}$$
 in a common body frame (draw this out)
- $\boldsymbol{J}_A = -\int_R \boldsymbol{a}^{\times} \boldsymbol{a}^{\times} dm$
 $= -\int_R (\boldsymbol{b} + \boldsymbol{\rho}^{BA})^{\times} (\boldsymbol{b} + \boldsymbol{\rho}^{BA}) dm$
 $= -\int_R \left(\boldsymbol{b}^{\times} \boldsymbol{b}^{\times} + \boldsymbol{\rho}^{BA^{\times}} \boldsymbol{b}^{\times} + \boldsymbol{b}^{\times} \boldsymbol{\rho}^{BA^{\times}} + \boldsymbol{\rho}^{BA^{\times}} \boldsymbol{\rho}^{BA^{\times}} \right) dm$
 $= -\int_R \boldsymbol{b}^{\times} \boldsymbol{b}^{\times} dm - \boldsymbol{\rho}^{BA^{\times}} \int_R \boldsymbol{b}^{\times} dm - \int_R \boldsymbol{b}^{\times} dm \boldsymbol{\rho}^{BA^{\times}} - \int dm \boldsymbol{\rho}^{BA^{\times}} \boldsymbol{\rho}^{BA^{\times}}$
 $= \boldsymbol{J}_B - \boldsymbol{\rho}^{BA^{\times}} \boldsymbol{c}_B^{\times} - \boldsymbol{c}_B^{\times} \boldsymbol{\rho}^{BA^{\times}} - m \boldsymbol{\rho}^{BA^{\times}} \boldsymbol{\rho}^{BA^{\times}}$
- This is the parallel axis theorem for an inertia matrix

Theorem

Parallel Axis Theorem: Given an inertia matrix J_B around a point B, and relative position ρ^{BA} from A to B, we can find the inertia matrix around A, J_A as:

$$\boldsymbol{J}_{A} = \boldsymbol{J}_{B} - \boldsymbol{\rho}^{BA^{\times}} \boldsymbol{c}_{B}^{\times} - \boldsymbol{c}_{B}^{\times} \boldsymbol{\rho}^{BA^{\times}} - m \boldsymbol{\rho}^{BA^{\times}} \boldsymbol{\rho}^{BA^{\times}}$$

• Consider the same reference point in two frames $\mathcal{F}_a, \mathcal{F}_b$; denote J_a, J_b be the inertia matrix about this point expressed in the two frames

$$- J_{a} = -\int_{R} \rho_{a}^{\times} \rho_{a}^{\times} dm$$

$$= -\int_{R} (C_{ab} \rho_{b})^{\times} (C_{ab} \rho_{b})^{\times} dm$$

$$= -\int_{R} (C_{ab} \rho_{b}^{\times} C_{ba}) (C_{ab} \rho_{b}^{\times} C_{ba}) dm$$

$$= C_{ab} \left(-\int_{R} \rho_{b}^{\times} \rho_{b}^{\times} \right) C_{ba}$$

$$= C_{ab} J_{b} C_{ba}$$

- This is the rotational transformation theorem for an inertia matrix
- Note for a second-order tensor, $\vec{J} = \vec{\mathcal{F}}_a^T J_a \vec{\mathcal{F}}_a \iff J_a = \vec{\mathcal{F}}_a \cdot \vec{J} \cdot \vec{\mathcal{F}}_a^T$, so this identity follows * The result applies for any second-order tensor

Motion of Rigid Bodies

- To get the equations of motion, we can treat a rigid body like a grammar of particles
- For a grammar of particles, $\vec{p} = \vec{f}$ and $\vec{h_O} + \vec{v_O} \times \vec{p} = \vec{\tau_O}$

–
$$oldsymbol{p}=moldsymbol{v}_O-oldsymbol{c}_O^{ imes}oldsymbol{\omega}$$

$$h_O = c_O^{ imes} v_O + J_O \omega$$

- But to use these, we have to first convert the derivative (\cdot) with respect to inertial frame into a derivative with respect to body frame

*
$$p^{\circ} + \underline{\omega} \times p = f$$

*
$$\vec{h}_O^\circ + \vec{\omega} \times \vec{h}_O + \vec{v}_O \times p = \vec{\tau}_O$$

– In the body frame:

*
$$\dot{p} + \omega^{ imes} p = f$$

* $\dot{h}_O + \omega^{\times} h_O + v_O^{\times} p = \tau_O$ • Therefore the equations of motion for a rigid body are given by, in the general case: $- m\dot{v}_O - c_O^{\times}\dot{\omega} + m\omega^{\times}v_O - \omega^{\times}c_O^{\times}v_O = f$ $- c_O^{\times}\dot{v}_O + J_O\dot{\omega} - c_O^{\times}\omega^{\times}v_O + \omega^{\times}J_O\omega = \tau_O$

- In matrix form, $M\begin{bmatrix} \dot{v}_O\\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} \omega^{\times} & \mathbf{0}\\ v_O^{\times} & \omega^{\times} \end{bmatrix} M\begin{bmatrix} v_O\\ \omega \end{bmatrix} = \begin{bmatrix} f\\ \tau_O \end{bmatrix}$ * $\begin{bmatrix} v_O\\ \omega \end{bmatrix}$ is a generalized velocity and $\begin{bmatrix} f\\ \tau_O \end{bmatrix}$ is a generalized force If $O = \mathbf{O}$, we can simplify (where all quantities are relative to the centre of mass):
- - * $m\dot{\boldsymbol{v}} + m\boldsymbol{\omega}^{\times}\boldsymbol{v} = \boldsymbol{f}$ * $I\dot{\omega} + \omega^{ imes}I\omega = au$
- Note that in the general case, the equations of motion are coupled; but if we use \mathbf{O} , the rotational equation is uncoupled, making it much easier to solve
- Solving this gives us the angular velocity of the body, but not the orientation; for that we need to use Poisson's equation $\dot{C} + \omega^{\times} C = 0$, or for Euler angles $\omega = S\dot{\theta}$ (or axis-angle/quaternion)
- Kinetic energy: $T = \frac{1}{2} \int_{D} \vec{r} \cdot \vec{r} \, dm$ $= \frac{1}{2} \int_{B} (\underline{v}_{O} - \underline{\rho} \times \underline{\omega}) \cdot (\underline{v}_{O} - \underline{\rho} \times \underline{\omega}) \,\mathrm{d}m$ $=\frac{1}{2}\int_{D}(\boldsymbol{v}_{O}-\boldsymbol{\rho}^{\times}\boldsymbol{\omega})^{T}(\boldsymbol{v}_{O}-\boldsymbol{\rho}^{\times}\boldsymbol{\omega})\,\mathrm{d}\boldsymbol{m}$ $= \frac{1}{2}m\boldsymbol{v}_{O}^{T}\boldsymbol{v}_{O} - \boldsymbol{v}_{O}^{T}\boldsymbol{c}_{O}^{\times}\boldsymbol{\omega} + \frac{1}{2}\boldsymbol{\omega}^{T}\boldsymbol{J}_{O}\boldsymbol{\omega}$ - Notice that this has 2 parts: translational, rotational, and a coupling term, which disappears when
 - we use the centre of mass reference frame
 - In matrix form, $T = \frac{1}{2} \begin{bmatrix} v_O \\ \omega \end{bmatrix}^T M \begin{bmatrix} v_O \\ \omega \end{bmatrix}$
- Note we can expand the inertia matrix as $I = \int_{R} \begin{bmatrix} y^2 + z^2 & -xy & -xz \\ -xy & x^2 + z^2 & -yz \\ -xz & -yz & x^2 + y^2 \end{bmatrix} dm$
 - In general I will be fully populated; but can we diagonalize it:
 - We know I is symmetric positive definite, so it is diagonalizable and the eigenvector matrix is orthogonal
 - There will always be a E such that $E^{-1}IE = \Lambda$; but since $E^{-1} = E^T$ (and choose E such that det E = 1), it is a rotation matrix
 - Recall that the inertia matrix transforms as $C_{ab}I_bC_{ba} = I_a$, which has the exact same form as the diagonalization we found
 - Therefore we can always find a reference frame such that I is diagonal; this is referred to as the principal-axis frame
 - This works even if we don't use \odot as our reference point
- In the principal axis frame, with Φ as our reference point, the rotational equation reduces to:
 - $-I_1\dot{\omega}_1 (I_2 I_3)\omega_2\omega_3 = \tau_1$
 - $I_2 \dot{\omega}_2 (I_3 I_1) \omega_3 \omega_1 = \tau_2$
 - $I_3 \dot{\omega}_3 (I_1 I_2) \omega_1 \omega_2 = \tau_3$
 - These are known as Euler's equations

Summary

For a rigid body, let ρ be the position of a differential mass element relative to O in a body-fixed frame, then:

• The first moment of mass/inertia $c_O = \int_R \rho \, \mathrm{d}m$, which is zero if $O = \mathbf{O}$

• The second moment of mass/inertia matrix $J_O = -\int_R \rho^{\times} \rho^{\times} dm$, which is diagonal in the principal axis frame and denoted I if $O = \Phi$

Then the linear and angular momenta are given by

$$\boldsymbol{p} = m \boldsymbol{v}_O - \boldsymbol{c}_O^{\times} \boldsymbol{\omega}, \quad \boldsymbol{h}_O = \boldsymbol{c}_O^{\times} \boldsymbol{v}_O + \boldsymbol{J}_O \boldsymbol{\omega}$$

The equations of motion are given by, in general,

$$egin{aligned} & m \dot{m{v}}_O - m{c}_O^{ imes} \dot{m{\omega}} + m m{\omega}^{ imes} m{v}_O - m{\omega}^{ imes} m{c}_O^{ imes} m{v}_O = m{f} \ & m{c}_O^{ imes} \dot{m{v}}_O + m{J}_O \dot{m{\omega}} - m{c}_O^{ imes} m{\omega}^{ imes} m{v}_O + m{\omega}^{ imes} m{J}_O m{\omega} = m{ au}_O \ & m{v}_O + m{\omega}^{ imes} m{J}_O m{\omega} = m{ au}_O \ & m{v}_O + m{\omega}^{ imes} m{J}_O m{\omega} = m{x}_O \ & m{v}_O + m{\omega}^{ imes} m{J}_O m{\omega} = m{x}_O \ & m{v}_O + m{\omega}^{ imes} m{v}_O + m{\omega}^{ imes} m{J}_O m{\omega} = m{x}_O \ & m{v}_O + m{\omega}^{ imes} m{v}_O \ & m{v}_O \ & m{v}_O + m{\omega}^{ imes} m{v}_O \ & m{v}_O$$

Using $O = \mathbf{O}$, this reduces to

$$egin{aligned} & m \dot{oldsymbol{v}} + m oldsymbol{\omega}^{ imes} oldsymbol{v} &= oldsymbol{f} \ & oldsymbol{I} \dot{oldsymbol{\omega}} + oldsymbol{\omega}^{ imes} oldsymbol{I} oldsymbol{\omega} &= oldsymbol{ au} \end{aligned}$$

And the kinetic energy is given by, in general

$$T = \frac{1}{2}m\boldsymbol{v}_{O}^{T}\boldsymbol{v}_{O} - \boldsymbol{v}_{O}^{T}\boldsymbol{c}_{O}^{\times}\boldsymbol{\omega} + \frac{1}{2}\boldsymbol{\omega}^{T}\boldsymbol{J}_{O}\boldsymbol{\omega}$$

where the middle coupling term disappears when using $O = \mathbf{O}$.