
Lecture 18, Nov 16, 2023
Dynamics of Rigid Bodies
Momentum of Rigid Bodies

• Consider a rigid body R and some inertial reference point OI

– Each differential mass element dm has momentum d
⃗
p =

⃗
r· dm

– Therefore the overall momentum is
⃗
p =

�
R⃗

r· dm

• Consider some reference point O fixed to the body, and let
⃗
ρ be the position of a mass element relative

to O
–

⃗
r· =

⃗
vO +

⃗
ρ· =

⃗
vO +

⃗
ρ◦ +

⃗
ω ×

⃗
ρ

– But
⃗
ρ is fixed as seen in a body-relative frame, so

⃗
ρ◦ = 0 (unless the body is deformable)

–
⃗
p =

�
R

(
⃗
vO +

⃗
ω ×

⃗
ρ) dm =

�
R⃗

vO dm −
�

R⃗
ρ ×

⃗
ω dm = m

⃗
vO −

(�
R⃗

ρ dm

)
×

⃗
ω

• Let
⃗
cO =

�
R⃗

ρ dm be the first moment of mass (aka first moment of inertia), then
⃗
p = m

⃗
vO −

⃗
cO ×

⃗
ω

– Note that
⃗
cO has a subscript since it is computed with respect to O

– Expressed in a body frame
⃗
Fb, p = mvO − c×

Oω
* Note cO is a constant in

⃗
Fb

• For angular momentum, d
⃗
hO =

⃗
ρ × d

⃗
p =

⃗
ρ × (

⃗
vO −

⃗
ρ ×

⃗
ω) dm =⇒

⃗
hO =

⃗
cO ×

⃗
vO −

�
R⃗

ρ × (
⃗
ρ ×

⃗
ω) dm

– In
⃗
Fb, hO = c×

OvO −
�

R

ρ×ρ×ω dm

= c×
OvO +

(
−
�

R

ρ×ρ× dm

)
ω

= c×
OvO + JOω

– JO = −
�

R

ρ×ρ× dm is the second moment of mass, or the inertia matrix

* Note
⃗
JO is a second order tensor ; in vector form,

⃗
hO =

⃗
cO ×

⃗
vO +

⃗
JO ·

⃗
ω

* JO =
�

R

(ρ21 − ρρT ) dm

– Let s be any vector, then sT JOs = −sT

(�
R

ρ×ρ× dm

)
s

= −
�

R

sT ρ×ρ×s dm

=
�

R

(ρ×s)T (ρ×s) dm

=
�

R

∥ρ×s∥2 dm

* There will always be some
⃗
ρ that is not parallel to

⃗
s for any 3D body, so this integral is always

positive for a nonzero
⃗
s

* Therefore JO is symmetric positive definite (hence why we include a minus sign in the
definition)

• A second-order tensor
⃗
D =

⃗
a
⃗
b is defined such that

⃗
D ·

⃗
v = (

⃗
a
⃗
b) ·

⃗
v =

⃗
a(

⃗
b ·

⃗
v)

• In matrix form,
[

p
hO

]
=

[
m1 −c×

O

c×
O JO

] [
vO

ω

]
, where M =

[
m1 −c×

O

c×
O JO

]
is the mass matrix, which is also

symmetric positive definite
• If we choose O = , then

�
R⃗

r dm = 0, so
⃗
c = 0

– p = mvO

– h = J ω = Iω, where we denote I as the inertia matrix about the centre of mass
• Consider two inertia matrices JA, JB relative to points A, B; for a differential mass element, denote
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position relative to A by
⃗
a, position relative to B by

⃗
b and the relative position between A and B is

⃗
ρBA

– a = b + ρBA in a common body frame (draw this out)
– JA = −

�
R

a×a× dm

= −
�

R

(b + ρBA)×(b + ρBA) dm

= −
�

R

(
b×b× + ρBA×

b× + b×ρBA× + ρBA×
ρBA×)

dm

= −
�

R

b×b× dm − ρBA×
�

R

b× dm −
�

R

b× dmρBA× −
�

dmρBA×
ρBA×

= JB − ρBA×
c×

B − c×
BρBA× − mρBA×

ρBA×

– This is the parallel axis theorem for an inertia matrix

Theorem

Parallel Axis Theorem: Given an inertia matrix JB around a point B, and relative position ρBA from
A to B, we can find the inertia matrix around A, JA as:

JA = JB − ρBA×
c×

B − c×
BρBA× − mρBA×

ρBA×

• Consider the same reference point in two frames
⃗
Fa,

⃗
Fb; denote Ja, Jb be the inertia matrix about this

point expressed in the two frames
– Ja = −

�
R

ρ×
a ρ×

a dm

= −
�

R

(Cabρb)×(Cabρb)× dm

= −
�

R

(Cabρ×
b Cba)(Cabρ×

b Cba) dm

= Cab

(
−
�

R

ρ×
b ρ×

b

)
Cba

= CabJbCba

– This is the rotational transformation theorem for an inertia matrix
– Note for a second-order tensor,

⃗
J =

⃗
FT

a Ja
⃗
Fa ⇐⇒ Ja =

⃗
Fa ·

⃗
J ·

⃗
FT

a , so this identity follows
* The result applies for any second-order tensor

Motion of Rigid Bodies

• To get the equations of motion, we can treat a rigid body like a grammar of particles
• For a grammar of particles,

⃗
p· =

⃗
f and

⃗
h·

O +
⃗
vO ×

⃗
p =

⃗
τO

– p = mvO − c×
Oω

– hO = c×
OvO + JOω

– But to use these, we have to first convert the derivative (·)· with respect to inertial frame into a
derivative with respect to body frame

*
⃗
p◦ +

⃗
ω ×

⃗
p =

⃗
f

*
⃗
h◦

O +
⃗
ω ×

⃗
hO +

⃗
vO ×

⃗
p =

⃗
τO

– In the body frame:
* ṗ + ω×p = f
* ḣO + ω×hO + v×

Op = τO

• Therefore the equations of motion for a rigid body are given by, in the general case:
– mv̇O − c×

Oω̇ + mω×vO − ω×c×
OvO = f

– c×
Ov̇O + JOω̇ − c×

Oω×vO + ω×JOω = τO
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– In matrix form, M

[
v̇O

ω̇

]
+

[
ω× 0
v×

O ω×

]
M

[
vO

ω

]
=

[
f
τO

]
*

[
vO

ω

]
is a generalized velocity and

[
f
τO

]
is a generalized force

– If O = , we can simplify (where all quantities are relative to the centre of mass):
* mv̇ + mω×v = f
* Iω̇ + ω×Iω = τ

– Note that in the general case, the equations of motion are coupled; but if we use , the rotational
equation is uncoupled, making it much easier to solve

– Solving this gives us the angular velocity of the body, but not the orientation; for that we need to
use Poisson’s equation Ċ + ω×C = 0, or for Euler angles ω = Sθ̇ (or axis-angle/quaternion)

• Kinetic energy: T = 1
2

�
R⃗

r· ·
⃗
r· dm

= 1
2

�
R

(
⃗
vO −

⃗
ρ ×

⃗
ω) · (

⃗
vO −

⃗
ρ ×

⃗
ω) dm

= 1
2

�
R

(vO − ρ×ω)T (vO − ρ×ω) dm

= 1
2mvT

OvO − vT
Oc×

Oω + 1
2ωT JOω

– Notice that this has 2 parts: translational, rotational, and a coupling term, which disappears when
we use the centre of mass reference frame

– In matrix form, T = 1
2

[
vO

ω

]T

M

[
vO

ω

]
• Note we can expand the inertia matrix as I =

�
R

y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 dm

– In general I will be fully populated; but can we diagonalize it?
– We know I is symmetric positive definite, so it is diagonalizable and the eigenvector matrix is

orthogonal
– There will always be a E such that E−1IE = Λ; but since E−1 = ET (and choose E such that

det E = 1), it is a rotation matrix
– Recall that the inertia matrix transforms as CabIbCba = Ia, which has the exact same form as the

diagonalization we found
– Therefore we can always find a reference frame such that I is diagonal; this is referred to as the

principal-axis frame
– This works even if we don’t use as our reference point

• In the principal axis frame, with as our reference point, the rotational equation reduces to:
– I1ω̇1 − (I2 − I3)ω2ω3 = τ1
– I2ω̇2 − (I3 − I1)ω3ω1 = τ2
– I3ω̇3 − (I1 − I2)ω1ω2 = τ3
– These are known as Euler’s equations
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Summary

For a rigid body, let ρ be the position of a differential mass element relative to O in a body-fixed
frame, then:

• The first moment of mass/inertia cO =
�

R

ρ dm, which is zero if O =

• The second moment of mass/inertia matrix JO = −
�

R

ρ×ρ× dm, which is diagonal in the
principal axis frame and denoted I if O =

Then the linear and angular momenta are given by

p = mvO − c×
Oω, hO = c×

OvO + JOω

The equations of motion are given by, in general,

mv̇O − c×
Oω̇ + mω×vO − ω×c×

OvO = f

c×
Ov̇O + JOω̇ − c×

Oω×vO + ω×JOω = τO

Using O = , this reduces to
mv̇ + mω×v = f

Iω̇ + ω×Iω = τ

And the kinetic energy is given by, in general

T = 1
2mvT

OvO − vT
Oc×

Oω + 1
2ωT JOω

where the middle coupling term disappears when using O = .

4


	Lecture 18, Nov 16, 2023
	Dynamics of Rigid Bodies
	Momentum of Rigid Bodies
	Motion of Rigid Bodies



