Lecture 17, Nov 14, 2023

Calculus of Variations – The Brachistochrone Problem

• Consider a ball starting at point $A = (x_1, y_1)$, rolling under the influence of gravity to point $B = (x_2, y_2)$; what is the shape of the curve that minimizes the travel time?

• We want to find y(x) such that $y(x_1) = y_1, y(x_2) = y_2$ and the travel time $T = \int_A^B dt$ is minimized

- Consider a differential curve element ds; $\frac{\mathrm{d}s}{\mathrm{d}t} = v$ so $\mathrm{d}t = \frac{\mathrm{d}s}{v}$

$$- ds = \sqrt{dx^2 + dy^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

– We can find v by conservation of energy: $\frac{1}{2}mv^2 + mgy = E \implies v = \sqrt{2g(y_0 - y)}$

– The problem becomes:

* Minimize
$$\frac{1}{\sqrt{2g}} \int_{x_1}^{x_2} \sqrt{\frac{1+(y')^2}{y_0-y}} \, \mathrm{d}x$$
 over $y(x)$
* Subject to $y(x_1) = y_1, y(x_2) = y_2$

- We can generalize this to minimizing $I = \int_{x_1}^{x_1} F(y, y', x) dx$
 - I is a functional a function that takes a function and gives a number
 - How do we minimize with respect to an entire function?
- Let $y^*(x)$ be a minimum, and let $y(x) = y^*(x) + \epsilon \eta(x)$, where ϵ is small and $\eta(x)$ is any function subject to $\eta(x_1) = \eta(x_2) = 0$ (so our boundary conditions are satisfied)

$$-y' = y^{*'} + \epsilon \eta' \Longrightarrow F(y, y', x) = F(y^* + \epsilon \eta, y^{*'} + \epsilon \eta', x)$$

$$-I = \Phi(\epsilon) = \int_{x_1}^{x_2} F(y^* + \epsilon \eta, y^{*'} + \epsilon \eta', x) \, \mathrm{d}x \text{ and } \epsilon = 0 \text{ must be a minimum, if } y^* \text{ is a minimum}$$

- Therefore the necessary condition is $\left. \frac{\mathrm{d}\Phi}{\mathrm{d}\epsilon} \right|_{\epsilon=0} = 0$

$$\begin{aligned} \frac{\mathrm{d}F}{\mathrm{d}\epsilon} &= \frac{\partial F}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}\epsilon} + \frac{\partial F}{\partial y'} \frac{\mathrm{d}y'}{\mathrm{d}\epsilon} \\ &= \frac{\partial F}{\partial y} \eta + \frac{\partial F}{\partial y'} \eta' \\ &- \left. \frac{\mathrm{d}\Phi}{\mathrm{d}\epsilon} \right|_{\epsilon=0} = \int_{x_1}^{x_2} \left(\frac{\partial F}{\partial y} \eta + \frac{\partial F}{\partial y'} \eta' \right) \mathrm{d}x \\ &= \left[\frac{\partial F}{\partial y'} \eta \right]_{x_1}^{x_2} + \int_{x_1}^{x_2} \left[\frac{\partial F}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial F}{\partial y'} \right) \right] \eta \,\mathrm{d}x \\ &= \int_{x_1}^{x_2} \left[\frac{\partial F}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial F}{\partial y'} \right) \right] \eta \,\mathrm{d}x \end{aligned}$$

* Note we applied integration by parts and used the boundary conditions $\eta(x_1) = \eta(x_2) = 0$ - Since this is always equal to 0 and η can be anything, we can conclude that the part inside the brackets must always be zero

* This is can be proven and is known as the Fundamental Lemma of Variational Calculus • Therefore the optimality condition is $\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) - \frac{\partial F}{\partial y} = 0$

- Notice that this is identical to Lagrange's equation in a conservative system
- This is the Euler-Lagrange Equation
- An alternative way to derive this is to let $\delta y = y y^*$ (which behaves like $\epsilon \eta$, then we would have $\delta I = 0$; we refer to this as a *stationary value* for I
 - δ is the variational operator; think of it as taking the Taylor expansion of a function

*
$$\delta F = \frac{\partial F}{\partial y} \delta y + \frac{\partial F}{\partial y'} \delta y$$

* Note derivatives, integrals, and δ commute

*
$$\delta\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}}{\mathrm{d}x}(\delta y)$$

* $\delta\int f\,\mathrm{d}x = \int \delta f\,\mathrm{d}x$
- $\delta I = \int_{x_1}^{x_2} \delta F(y,y',x)\,\mathrm{d}x = \int_{x_1}^{x_2} \left(\frac{\partial F}{\partial y}\delta y + \frac{\partial F}{\partial y'}\delta y'\right)\,\mathrm{d}x = 0$
- We can then apply integration by parts and use $\delta u(x_1) = \delta u(x_2) = 0$, and a

- We can then apply integration by parts and use $\delta y(x_1) = \delta y(x_2) = 0$, and apply the fundamental lemma as normal

Hamiltonian Mechanics

- Hamilton's Principle: the motion of a system, under the influence of conservative forces, from time t_1 to t_2 , is given by the stationary value of the functional $I = \int_{t_1}^{t_2} L \, dt$, where L = T V
 - Under non-conservative forces, we instead have $\delta \int_{t_1}^{t_2} L \, dt + \int_{t_1}^{t_2} \delta W_{\Delta} \, dt = 0$, where δW_{Δ} is the virtual work done by non-conservative forces
 - This is the *extended Hamilton's principle*
- Hamilton's principle, like Newton's laws and Lagrange's principle, is an equivalent description of classical mechanics; all 3 apply at each instance in time
 - Unlike the other two however, Hamiltonian mechanics looks at an interval of time, while the other two methods look at an instant in time
- The Hamiltonian is defined by $H = \sum_{k} \dot{q}_{k} p_{k} L(\boldsymbol{q}, \dot{\boldsymbol{q}}, t)$, where $p_{k} = \frac{\partial L}{\partial \dot{q}_{k}}$ is the generalized momentum

of each coordinate

$$- dH = \sum_{k} \left(p_{k} d\dot{q}_{k} + \dot{q}_{k} dp_{k} - \frac{\partial L}{\partial q_{k}} dq_{k} - \frac{\partial L}{\partial \dot{q}_{k}} d\dot{q}_{k} \right) - \frac{\partial L}{\partial t} dt$$

- For a conservative system, $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{k}} \right) = \frac{\partial L}{\partial q_{k}} \implies \dot{p}_{k} = \frac{\partial L}{\partial q_{k}}$
- $dH = \sum_{k} \left(\dot{q}_{k} dp_{k} - \dot{p}_{k} dq_{k} \right) - \frac{\partial L}{\partial t} dt$

- * We have shown that any differential in H is given by differentials in p, q and t
- * Therefore $H = H(\boldsymbol{q}, \boldsymbol{p}, t)$ and has no dependence on \dot{q}

- By the chain rule,
$$dH = \sum_{k} \left(\frac{\partial H}{\partial p_k} dp_k + \frac{\partial H}{\partial q_k} dq_k \right) + \frac{\partial H}{\partial t} dt$$

- * Therefore $\dot{q}_k = \frac{\partial H}{\partial p_k}, \dot{p}_k = -\frac{\partial H}{\partial q_k}$
- * These are known as *Hamilton's Canonical Equations*, and can serve as an alternative formulation of mechanics