Lecture 15, Oct 26, 2023

Example: Spherical Pendulum

e Consider a pendulum of mass m, length [ at an angle 6 from the vertical and ¢ from the = axis; what
are the equations of motion
e Our generalized coordinates are g1 = ¢,q2 =0

e To get the kinetic energy we break up the velocity into two components
1

1 . . 1 . .
- T= gmv2 =5m ((160)> + (I¢sin6)?) = Eml2(92 + ¢*sin? 0)
« Using the pivot as zero, the potential energy due to gravity is V = mgl cos 6
o No Q. because there are no non-conservative forces in our problem

1 . .
o L= iml2(92 + $?sin? @) — mgl cos §
e Compute the derivatives:

- 8—L = ml%0

i <8L> mil0
dt \ 00

= ml?¢?sin 6 cos  + mglsin @

)
— = =mil?$sin’0
0
_ i (8L> = mi?$sin? 0 — 2mi*6¢ sin 6 cos 0
dt \ 9¢
L
e 0

¢ The two equations are:
— mlzq — ml?¢? sinf cos —mglsing =0
— mi%¢sin® 0 — 2mi*0Hsinfcosh = 0
d /0L . . oL .
e Note because — | — | = 0, we can immediately say — is a constant
dt \ 9 d
— In this case we refer to ¢ as an ignorable, or cyclical coordinate
— Physically, ml?¢sin®  is the angular momentum about the vertical axis, which is conserved, hence
i;c9 is a constant
- —— is a generalized momentum
I
Constraints — Method of Lagrange Multipliers

e Consider a hoop of radius a rolling without slipping at an angle ¢ down a ramp, at a distance z
— In this case we only have 1 independent coordinate — we can’t move = and ¢ independently of
each other
—dr=adp = x=ap+xg
— Starting from the differential form we were able to integrate this to get an expression relating x
and ¢; this is not always possible
— If we had an expression involving x, we can simply replace it by an expression of ¢
e Now consider that hoop rolling on a 2D surface, at a direction of # with respect to the x axis
— dz = ad¢cosb,dy = adgsin b
— We have 2 independent coordinates since the change in 6 and ¢ dictate the change in x and y
— But we can no longer directly integrate our differential constraints since x and y depend on the
entire history of 6 and ¢
— Even though we only have 2 independent coordinates, we cannot write z and y independently of ¢
and @, so we can’t substitute z and y for ¢ and # anymore
o In general, integrable constraints can be written as ¢(x,¢) = 0 and are referred to as holonomic
constraints; if they can’t be integrated, they are non-holonomic



— Note that inequality constraints are holonomic
— Holonomic constraints tell you “where” you can go — they limit the space of coordinates to a
subspace that we can reach
— Non-holonomic constraints tell you “how” you can go — they limit the possible paths we can take
through the coordinate space
oT oT
e Recall that from Z [ E— — ( ) + ] dqr = 0, we concluded that the part inside the brackets
. 94k Oqx,
was zero for all £ because the dqi. are independent; but if we have dependent coordinates, we can no
longer do this
o Consider a series of (linearly independent) constraints in the form Z Ejkdgr =0forj=1,...,m

k
— We can use the method of Lagrange multipliers

— Multiply each constraint by A;, so Z Aj Z Ejrdgr =0
j k

oL L
72 dt (8%) qk_Qk’A_;/\jujk b0 =0

- Wlthout loss of generality, let gx,k = 1,...,m be dependent on gi,k =m + 1,...,n, which are
independent

L L
— We can choose A; such that — ( 0 ) 4
Ok oqr,

QkA“rZ)\-—kaOTk—l
Jj=1

- d (0L OL o
* Now Z dt<'>_3qk_Qk’A_;)\j:jk oqr =0

k=m+1 6Qk
* But we said that g, for kK = m+1,...,n are independent, so we can apply the same argument
as before
d [/ OL oL
= <) - = Qs+ Z A;jEjk applies for all coordinates, regardless of independence
I, Oqr. =

— Note that we have n + m unknowns (the g5 and A;), which are matched by our n + m equations
(n Lagrange equations and m constraints)
n

— In general the constraints are Z Hirdgr +Z5:dt =0
k=1

n
* Dividing by dt, Z Ejrdr + Zj¢ = 0, which are our m constraint equations
k=1
* This is known as the Pfaffian form of the constraints

Example: Atwood’s Machine

o Consider two masses mj, mo hung over a pulley with mass m,,, which is concentrated at the circumference
(so we don’t need to worry about moment of inertia)

e The height of the masses are 21, zo; the pulley is rotating by an angle 6, and let z3 = afl where a is the
radius of the pulley

e We have 1 degree of freedom, but we will use all 3 coordinates and use 2 constraints:

le — d23 =0
—zn=a0=23=—2
dzg +dz3 =0
— Therefore Ell = 1,512 = O,Elg = —1; Egl = 0,522 = 1,523 =1
» Kinetic and potential energy:
1 5, 1 51
- T = UGS + 5 M4 + 53

=V =mygz1 + magz
o Derivatives:



oL . d /0L oL

_ 8721 =mizi, & (821> =miz, 8721 = —mg
oL . d /0L . OL

U (O L O,
oL . d [/OL . OL

_ 87,23 = mpZs, M <823> = myZ23, 6723 =0

— Assume no non-conservative forces
o Lagrange’s equations:

— m1Z1 +m1g = ME11 + A2Z21 = A1

— MmaZa +mag = ME12 + A2E22 = Ao

- mpég = )\1513 + /\2523 = —/\1 + /\2
e Constraint equations:

B —33=0

—22+23=0
e We can solve this to get 2, = —25 = 23 = — UL L

mp+m1+mgg
m, + 2m
—)\1=p—2mlg
mp +my1 + me
m, + 2m
- A2 = L g
—mMp + My + mo

The idea of Atwood’s machine is that we can choose the masses to be nearly equal, so we get an
effective g that’s very small

— A1 and A turn out to be the tension on the two sides of the string
e In general, the Lagrange multipliers have meaning — they are associated with the constraint forces
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