Lecture 15, Oct 26, 2023

Example: Spherical Pendulum

- Consider a pendulum of mass m, length l at an angle θ from the vertical and ϕ from the x axis; what are the equations of motion
- Our generalized coordinates are $q_1 = \phi, q_2 = \theta$
- To get the kinetic energy we break up the velocity into two components

$$-T = \frac{1}{2}mv^{2} = \frac{1}{2}m\left((l\dot{\theta})^{2} + (l\dot{\phi}\sin\theta)^{2}\right) = \frac{1}{2}ml^{2}(\dot{\theta}^{2} + \dot{\phi}^{2}\sin^{2}\theta)$$

- Using the pivot as zero, the potential energy due to gravity is $V = mgl\cos\theta$
- No $Q_{k, \vartriangle}$ because there are no non-conservative forces in our problem

•
$$L = \frac{1}{2}ml^2(\dot{\theta}^2 + \dot{\phi}^2\sin^2\theta) - mgl\cos\theta$$

• Compute the derivatives:

$$-\frac{\partial L}{\partial \dot{\theta}} = ml^2 \dot{\theta}$$

$$-\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}}\right) ml^2 \ddot{\theta}$$

$$-\frac{\partial L}{\partial \theta} = ml^2 \dot{\phi}^2 \sin \theta \cos \theta + mgl \sin \theta$$

$$-\frac{\partial L}{\partial \dot{\phi}} = ml^2 \dot{\phi} \sin^2 \theta$$

$$-\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}}\right) = ml^2 \ddot{\phi} \sin^2 \theta - 2ml^2 \dot{\theta} \dot{\phi} \sin \theta \cos \theta$$

$$-\frac{\partial L}{\partial \phi} = 0$$

• The two equations are:

$$-ml^2\theta - ml^2\phi^2\sin\theta\cos\theta - mgl\sin\theta = 0$$

 $-ml^2\ddot{\phi}\sin^2\theta - 2ml^2\dot{\theta}\dot{\phi}\sin\theta\cos\theta = 0$

Note because
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{\phi}} \right) = 0$$
, we can immediately say $\frac{\partial L}{\partial \dot{\phi}}$ is a constant

- In this case we refer to ϕ as an ignorable, or $cyclical\ coordinate$
- Physically, $ml^2 \dot{\phi} \sin^2 \theta$ is the angular momentum about the vertical axis, which is conserved, hence it is a constant
- it is a constant $-\frac{\partial L}{\partial \dot{q}_k}$ is a generalized momentum

Constraints – Method of Lagrange Multipliers

- Consider a hoop of radius a rolling without slipping at an angle ϕ down a ramp, at a distance x
 - In this case we only have 1 independent coordinate we can't move x and ϕ independently of each other
 - $dx = ad\phi \implies x = a\phi + x_0$
 - Starting from the differential form we were able to integrate this to get an expression relating x and ϕ ; this is not always possible
 - If we had an expression involving x, we can simply replace it by an expression of ϕ
- Now consider that hoop rolling on a 2D surface, at a direction of θ with respect to the x axis

 $- dx = a d\phi \cos \theta, dy = a d\phi \sin \theta$

- We have 2 independent coordinates since the change in θ and ϕ dictate the change in x and y
- But we can no longer directly integrate our differential constraints since x and y depend on the entire history of θ and ϕ
- Even though we only have 2 independent coordinates, we cannot write x and y independently of ϕ and θ , so we can't substitute x and y for ϕ and θ anymore
- In general, integrable constraints can be written as $\varphi(x, \phi) = 0$ and are referred to as holonomic constraints; if they can't be integrated, they are non-holonomic

- Note that inequality constraints are holonomic
- Holonomic constraints tell you "where" you can go they limit the space of coordinates to a subspace that we can reach
- Non-holonomic constraints tell you "how" you can go they limit the possible paths we can take _ through the coordinate space
- Recall that from $\sum_{k} \left[Q_k \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_k} \right) + \frac{\partial T}{\partial q_k} \right] \delta q_k = 0$, we concluded that the part inside the brackets was zero for all k because the δq_k are independent; but if we have dependent coordinates, we can no longer do this
- Consider a series of (linearly independent) constraints in the form $\sum_{k} \Xi_{jk} \delta q_k = 0$ for $j = 1, \dots, m$
 - We can use the method of Lagrange multipliers
 - Multiply each constraint by λ_j , so $\sum_{i} \lambda_j \sum_{j} \Xi_{jk} \delta q_k = 0$

$$-\sum_{k=1}^{n} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_{k}} \right) - \frac{\partial L}{\partial q_{k}} - Q_{k, \Delta} - \sum_{j=1}^{m} \lambda_{j} \Xi_{jk} \right] \delta q_{k} = 0$$

- Without loss of generality, let $q_k, k = 1, \dots, m$ be dependent on $q_k, k = m + 1, \dots, n$, which are independent

- We can choose
$$\lambda_j$$
 such that $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_k} \right) - \frac{\partial L}{\partial q_k} = Q_{k,\vartriangle} + \sum_{j=1}^m \lambda_j \Xi_{jk}$ for $k = 1, \ldots, m$

* Now
$$\sum_{k=m+1}^{n} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_k} \right) - \frac{\partial L}{\partial q_k} - Q_{k,\triangle} - \sum_{j=1}^{m} \lambda_j \Xi_{jk} \right] \delta q_k = 0$$

- * But we said that q_k for $k = m + 1, \ldots, n$ are independent, so we can apply the same argument as before
- $\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{q}_k}\right) \frac{\partial L}{\partial q_k} = Q_{k,\triangle} + \sum_{i=1}^m \lambda_j \Xi_{jk}$ applies for all coordinates, regardless of independence
 - Note that we have n + m unknowns (the q_k and λ_j), which are matched by our n + m equations (n Lagrange equations and m constraints)
 - In general the constraints are $\sum_{k=1}^{n} \Xi_{jk} dq_k + \Xi_{jt} dt = 0$
 - * Dividing by dt, $\sum_{k=1}^{n} \Xi_{jk} \dot{q}_k + \Xi_{jt} = 0$, which are our *m* constraint equations
 - * This is known as the *Pfaffian form* of the constraints

Example: Atwood's Machine

- Consider two masses m_1, m_2 hung over a pulley with mass m_p , which is concentrated at the circumference (so we don't need to worry about moment of inertia)
- The height of the masses are z_1, z_2 ; the pulley is rotating by an angle θ , and let $z_3 = a\theta$ where a is the radius of the pulley
- We have 1 degree of freedom, but we will use all 3 coordinates and use 2 constraints:

 $-z_{1} = a\theta = z_{3} = -z_{2} \implies \begin{cases} dz_{1} - dz_{3} = 0\\ dz_{2} + dz_{3} = 0\\ dz_{2} + dz_{3} = 0 \end{cases}$ - Therefore $\Xi_{11} = 1, \Xi_{12} = 0, \Xi_{13} = -1; \Xi_{21} = 0, \Xi_{22} = 1, \Xi_{23} = 1$ • Kinetic and potential energy: $-T = \frac{1}{2}m_1\dot{z}_1^2 + \frac{1}{2}m_2\dot{z}_2^2 + \frac{1}{2}m_p\dot{z}_3^2$ $-V = m_1gz_1 + m_2gz_2$

• Derivatives:

$$-\frac{\partial L}{\partial \dot{z}_1} = m_1 \dot{z}_1, \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{z}_1} \right) = m_1 \ddot{z}_1, \frac{\partial L}{\partial z_1} = -m_1 g$$
$$-\frac{\partial L}{\partial \dot{z}_2} = m_2 \dot{z}_2, \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{z}_2} \right) = m_2 \ddot{z}_2, \frac{\partial L}{\partial z_2} = -m_2 g$$
$$-\frac{\partial L}{\partial \dot{z}_3} = m_p \dot{z}_3, \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{z}_3} \right) = m_p \ddot{z}_3, \frac{\partial L}{\partial z_3} = 0$$
$$- \text{Assume no non-conservative forces}$$

• Lagrange's equations:

$$- m_1 \ddot{z}_1 + m_1 g = \lambda_1 \Xi_{11} + \lambda_2 \Xi_{21} = \lambda_1$$

- $\begin{array}{l} \ m_2 \ddot{z}_2 + m_2 g = \lambda_1 \Xi_{12} + \lambda_2 \Xi_{22} = \lambda_2 \\ \ m_p \ddot{z}_3 = \lambda_1 \Xi_{13} + \lambda_2 \Xi_{23} = -\lambda_1 + \lambda_2 \end{array}$
- Constraint equations:
 - $\begin{array}{c} \dot{z}_1 \dot{z}_3 = 0 \\ \dot{z}_2 + \dot{z}_3 = 0 \end{array}$

• We can solve this to get $\ddot{z}_1 = -\ddot{z}_2 = \ddot{z}_3 = -\frac{m_1 - m_2}{m_p + m_1 + m_2}g$

$$-\lambda_1 = \frac{m_p + 2m_2}{m_p + m_1 + m_2} m_1 g$$

$$-\lambda_2 = \frac{m_p + 2m_1}{-m_p + m_1 + m_2} m_2 g$$

- The idea of Atwood's machine is that we can choose the masses to be nearly equal, so we get an effective g that's very small
- λ_1 and λ_2 turn out to be the tension on the two sides of the string
- In general, the Lagrange multipliers have meaning they are associated with the constraint forces