Lecture 14, Oct 24, 2023

Virtual Work and D'Alembert's Principle

- Consider a grammar of particles in static equilibrium; we will have that $f_i = \underline{0}$; then for any small displacement $\delta \underline{r}_i = 0$, so $\sum \underline{f}_i \cdot \delta \underline{r}_i = 0$
 - We define this quantity as the *virtual work* $\delta \widehat{W}$ (note the ligature since work is not path-independent)
 - We call δr_i a virtual displacement
- In general we can write $\underline{f}_i = \underline{f}_{i,app} + \underline{f}_{i,\square}$, where $\underline{f}_{i,app}$ is an applied force and $\underline{f}_{i,\square}$ is a constraint force - Then $\delta W = \sum_{i} \vec{f}_{i,app} \cdot \vec{\delta r}_{i} + \sum_{i} \vec{f}_{i,\Box} \cdot \vec{\delta r}_{i} = \sum_{i} \vec{f}_{i,app} \cdot \vec{\delta r}_{i}$ because constraint forces do no work,
 - provided that the δr_i are consistent with the geometry of the system
 - * This is the *principle of virtual work* and is an assumption that we make
- What about particles in dynamic equilibrium?
 - $-\underline{f}_i = m\underline{r}$
 - So we just need to consider $f_i m_i \underline{r}_i^{\cdot \cdot}$ as the total force according to d'Alembert's principle
 - $-\delta W = \sum_{i} (\underline{f}_{i,app} m_i \underline{r}_i) \cdot \delta \underline{r}_i = 0$ by the same reasoning and assumptions above, as long as $\delta \underline{r}_i$ is

consistent with the system's constraints

- * This is known as *d'Alembert's principle* (again)
- Note that since we no longer have to consider constraint forces we will drop the subscript

Lagrangian Mechanics

- Consider an independent set of coordinates q_1, q_2, \ldots, q_n where n is the number of degrees of freedom
 - The coordinates must be complete, i.e. satisfy $\underline{r}_i = \underline{r}_i(q_{11}, q_{12}, \ldots, q_n, t)$; the position of any particle must be expressible in terms of the generalized coordinates
 - These coordinates are called *generalized coordinates*, because the do not have to be Cartesian; instead they can be displacements or angles etc
 - We aim to obtain equations of motions in these generalized coordinates only
- Any permissible virtual displacement can then be given in terms of these coordinates: $\delta \underline{r}_i = \sum_k \frac{\partial \underline{r}_i}{\partial q_k} \delta q_k$

- in this form it is clear that the virtual displacements are permissible

- Note that even though \underline{r}_i can be dependent on time, the virtual displacements $\delta \underline{r}_i$ are "frozen" in time; this is why we don't need to consider $\frac{\partial \underline{r}_i}{\partial t}$

•
$$\sum_{i} \underbrace{f_{i} \cdot \delta r_{i}}_{i} - \sum_{i} m_{i} r_{i}^{...} \cdot \delta r_{i} = 0$$

-
$$\sum_{i} \underbrace{f_{i} \cdot \delta r_{i}}_{i} = \sum_{i} \sum_{k} \underbrace{f_{i} \cdot \frac{\partial r_{i}}{\partial q_{k}}}_{k} \delta q_{k} = \sum_{k} Q_{k} \delta q_{k} \text{ where } Q_{k} = \sum_{i} \underbrace{f_{i} \cdot \frac{\partial r_{i}}{\partial q_{k}}}_{i}$$

* Q_{k} are referred to as the generalized forces
-
$$\sum_{i} m_{i} r_{i}^{...} \cdot \delta r_{i} = \sum_{i} \sum_{j} m_{i} r_{i}^{...} \cdot \frac{\partial r_{i}}{\partial q_{k}} \delta q_{k} = \sum_{i} \sum_{j} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(m_{i} r_{i} \cdot \frac{\partial r_{i}}{\partial q_{k}} \right) - m_{i} r_{i} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial r_{i}}{\partial q_{i}} \right) \right] \delta q_{k}$$

- Note $\frac{\partial r_{i}}{\partial q_{k}} = \frac{\partial v_{i}}{\partial \dot{q}_{k}}$ and $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial r_{i}}{\partial q_{k}} \right) = \frac{\partial v_{i}}{\partial q_{k}}$ so the stuff in brackets becomes $\frac{\mathrm{d}}{\mathrm{d}t} \left(m_{i} v_{i} \cdot \frac{\partial v_{i}}{\partial \dot{q}_{i}} \right) - m_{i} v_{i} \cdot \frac{\partial v_{i}}{\partial \dot{q}_{i}} \right) - m_{i} v_{i} \cdot \frac{\partial v_{i}}{\partial \dot{q}_{i}} \right] - m_{i} v_{i} \cdot \frac{\partial v_{i}}{\partial \dot{q}_{i}} + \frac{\partial v_{i}}{\partial \dot{q}_{k}} \left[\frac{\partial v_{i}}{\partial q_{k}} \left(\frac{1}{2} m_{i} v_{i}^{2} \right) \right] - \frac{\partial v_{i}}{\partial q_{k}} \left(\frac{1}{2} m_{i} v_{i} \cdot v_{i} \right) = \frac{\partial v_{i}}{\partial t} \left(\frac{\partial v_{i}}{\partial \dot{q}_{k}} T_{i} \right) - \frac{\partial v_{i}}{\partial q_{k}} T_{i}$
- Together we have $\sum_{k} Q_{k} \delta q_{k} - \sum_{k} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial v_{i}}{\partial \dot{q}_{k}} \left(\sum_{i} T_{i} \right) \right) - \frac{\partial}{\partial q_{k}} \left(\sum_{i} T_{i} \right) \right] \delta q_{k} = 0$
- $\sum_{k} \left[Q_{k} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_{k}} \right) + \frac{\partial T}{\partial q_{k}} \right] \delta q_{k} = 0$

- Since δq_k are all independent, we can choose each one independently and arbitrarily; therefore we need $Q_k \delta q_k - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_k}\right) + \frac{\partial T}{\partial q_k} = 0$ for all k

•
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_k} \right) + \frac{\partial T}{\partial q_k} = Q_k$$

- $Q_k = \sum_i \vec{f}_i \cdot \frac{\partial \vec{r}_i}{\partial q_k}$

- Split the forces into conservative and non-conservative parts $\underline{f}_i = -\vec{\nabla}V_i + \underline{f}_{i,\triangle}$ Then $Q_k = -\sum_i \vec{\nabla}V_i \cdot \frac{\partial \underline{r}_i}{\partial q_k} + \sum_i f_{i,\triangle} \cdot \frac{\partial \underline{r}_i}{\partial q_k} = -\frac{\partial V}{\partial q_k} + Q_{k,\triangle}$
 - * $Q_{k, \triangle}$ are the generalized non-conservative force
- Plugging this back in we get $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_k} \right) + \frac{\partial T}{\partial q_k} = -\frac{\partial V}{\partial q_k} + Q_{k,\vartriangle}$ * Assuming V is a function of position only, $\frac{\partial V}{\partial \dot{q}_k} = 0$, so we have $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial}{\partial \dot{q}_k} (T - V) \right) + \frac{\partial}{\partial q_k} (T - V)$ $V) = Q_k$

- Letting
$$L = T - V$$
, we get $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_k}\right) - \frac{\partial L}{\partial q_k} = Q_{k,\triangle}$

- $\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{q}_k}\right) \frac{\partial L}{\partial q_k} = Q_{k,\triangle}$ is Lagrange's equation (aka the Euler-Lagrange equation)
 - $-Q_{k, \triangle} = \sum_{i} \underline{f}_{i, \triangle} \cdot \frac{\partial \underline{r}_i}{\partial q_k}$ is the generalized non-conservative force
 - -L = T V is the Lagrangian, the difference between the kinetic and potential energies (summed across all particles)
 - * Note that when we take the partials with respect to \dot{q}_k and q_k , we treat these two as independent - For a system with n degrees of freedom, there are n Lagrange's equations
 - If we have no non-conservative forces, then the equation equals zero
 - Lagrange's equation is equivalent to Newton's laws we can replace $f = m\vec{r}$ by this formulation to yield identical results
- Note that since we started with Newton's second law, this can only be applied in an inertial frame - There is a way around this by considering the potential to be velocity-dependent
- Example: pendulum with length l, mass m and angle θ

$$q_1 = \theta_1$$

$$-T = \frac{1}{2}m(l\dot{\theta})^2 = \frac{1}{2}ml^2\dot{\theta}^2$$

 $-V = -mq\cos\theta$ (gravity, with the pivot as reference height)

* Note it doesn't matter what we take as the reference here because we always take the partial derivative of the Lagrangian, so constant factors in energy disappear as expected

- Assume that there are no non-conservative forces

$$\frac{\partial L}{\partial \dot{\theta}} = ml^2 \dot{\theta} \implies \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{\theta}} \right) = ml^2 \ddot{\theta}$$

$$-\frac{1}{\partial\theta} = -mgl\sin\theta$$

- Plugging in, we get $ml^2\ddot{\theta} - (-mgl\sin\theta) = 0 \implies \ddot{\theta} + \frac{g}{l}\sin\theta = 0$, exactly what we get with Newtonian mechanics