
Lecture 14, Oct 24, 2023
Virtual Work and D’Alembert’s Principle

• Consider a grammar of particles in static equilibrium; we will have that
⃗
fi =

⃗
0; then for any small

displacement δ
⃗
ri = 0, so

∑
i ⃗

fi · δ
⃗
ri = 0

– We define this quantity as the virtual work δW
⌢ (note the ligature since work is not path-independent)

– We call δ
⃗
ri a virtual displacement

• In general we can write
⃗
fi =

⃗
fi,app +

⃗
fi,□, where

⃗
fi,app is an applied force and

⃗
fi,□ is a constraint force

– Then δW
⌢ =

∑
i ⃗

fi,app · δ
⃗
ri +

∑
i ⃗

fi,□ · δ
⃗
ri =

∑
i ⃗

fi,app · δ
⃗
ri because constraint forces do no work,

provided that the δ
⃗
ri are consistent with the geometry of the system

* This is the principle of virtual work and is an assumption that we make
• What about particles in dynamic equilibrium?

–
⃗
fi = m

⃗
r··

– So we just need to consider
⃗
fi − mi

⃗
r··i as the total force – according to d’Alembert’s principle

– δW
⌢ =

∑
i

(
⃗
fi,app − mi

⃗
r··i ) · δ

⃗
ri = 0 by the same reasoning and assumptions above, as long as δ

⃗
ri is

consistent with the system’s constraints
* This is known as d’Alembert’s principle (again)

– Note that since we no longer have to consider constraint forces we will drop the subscript

Lagrangian Mechanics
• Consider an independent set of coordinates q1, q2, . . . , qn where n is the number of degrees of freedom

– The coordinates must be complete, i.e. satisfy
⃗
ri =

⃗
ri(q11, q12, . . . , qn, t); the position of any particle

must be expressible in terms of the generalized coordinates
– These coordinates are called generalized coordinates, because the do not have to be Cartesian;

instead they can be displacements or angles etc
– We aim to obtain equations of motions in these generalized coordinates only

• Any permissible virtual displacement can then be given in terms of these coordinates: δ
⃗
ri =

∑
k

∂
⃗
ri

∂qk
δqk

– in this form it is clear that the virtual displacements are permissible
– Note that even though

⃗
ri can be dependent on time, the virtual displacements δ

⃗
ri are “frozen” in

time; this is why we don’t need to consider ∂
⃗
ri

∂t
•
∑

i ⃗
fi · δ

⃗
ri −

∑
i

mi
⃗
r··i · δ

⃗
ri = 0

–
∑

⃗
fi · δ

⃗
ri =

∑
i

∑
k ⃗

fi · ∂
⃗
ri

∂qk
δqk =

∑
k

Qkδqk where Qk =
∑

i ⃗
fi · ∂

⃗
ri

∂qk

* Qk are referred to as the generalized forces

–
∑

i

mi
⃗
r··i · δ

⃗
ri =

∑
i

∑
j

mi
⃗
r··i · ∂

⃗
ri

∂qk
δqk =

∑
i

∑
j

[
d
dt

(
mi

⃗
r·i · ∂

⃗
ri

∂qk

)
− mi

⃗
r·i · d

dt

(
∂
⃗
ri

∂qi

)]
δqk

– Note ∂
⃗
ri

∂qk
= ∂

⃗
vi

∂q̇k
and d

dt

(
∂
⃗
ri

∂qk

)
= ∂

⃗
vi

∂qk
so the stuff in brackets becomes d

dt

(
mi

⃗
vi · ∂

⃗
vi

∂q̇i

)
− mi

⃗
vi ·

∂
⃗
vi

∂qk
= d

dt

[
∂

∂q̇k

(
1
2miv

2
i

)]
− ∂

∂qk

(
1
2mi

⃗
vi ·

⃗
vi

)
= ∂

∂t

(
∂

∂q̇k
Ti

)
− ∂

∂qk
Ti

– Together we have
∑

k

Qkδqk −
∑

k

[
d
dt

(
∂

∂q̇k

(∑
i

Ti

))
− ∂

∂qk

(∑
i

Ti

)]
δqk = 0

–
∑

k

[
Qk − d

dt

(
∂T

∂q̇k

)
+ ∂T

∂qk

]
δqk = 0
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– Since δqk are all independent, we can choose each one independently and arbitrarily; therefore we

need Qkδqk − d
dt

(
∂T

∂q̇k

)
+ ∂T

∂qk
= 0 for all k

• d
dt

(
∂T

∂q̇k

)
+ ∂T

∂qk
= Qk

– Qk =
∑

i ⃗
fi · ∂

⃗
ri

∂qk

– Split the forces into conservative and non-conservative parts
⃗
fi = −∇⃗Vi +

⃗
fi,△

– Then Qk = −
∑

i

∇⃗Vi · ∂
⃗
ri

∂qk
+
∑

i

fi,△ · ∂
⃗
ri

∂qk
= − ∂V

∂qk
+ Qk,△

* Qk,△ are the generalized non-conservative forces

– Plugging this back in we get d
dt

(
∂T

∂q̇k

)
+ ∂T

∂qk
= − ∂V

∂qk
+ Qk,△

* Assuming V is a function of position only, ∂V

∂q̇k
= 0, so we have d

dt

(
∂

∂q̇k
(T − V )

)
+ ∂

∂qk
(T −

V ) = Qk,△

– Letting L = T − V , we get d
dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= Qk,△

• d
dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= Qk,△ is Lagrange’s equation (aka the Euler-Lagrange equation)

– Qk,△ =
∑

i ⃗
fi,△ · ∂

⃗
ri

∂qk
is the generalized non-conservative force

– L = T − V is the Lagrangian, the difference between the kinetic and potential energies (summed
across all particles)

* Note that when we take the partials with respect to q̇k and qk, we treat these two as independent
– For a system with n degrees of freedom, there are n Lagrange’s equations
– If we have no non-conservative forces, then the equation equals zero
– Lagrange’s equation is equivalent to Newton’s laws – we can replace

⃗
f = m

⃗
r·· by this formulation

to yield identical results
• Note that since we started with Newton’s second law, this can only be applied in an inertial frame

– There is a way around this by considering the potential to be velocity-dependent
• Example: pendulum with length l, mass m and angle θ

– q1 = θ

– T = 1
2m(lθ̇)2 = 1

2ml2θ̇2

– V = −mg cos θ (gravity, with the pivot as reference height)
* Note it doesn’t matter what we take as the reference here because we always take the partial

derivative of the Lagrangian, so constant factors in energy disappear as expected
– Assume that there are no non-conservative forces
– ∂L

∂θ̇
= ml2θ̇ =⇒ d

dt

(
∂L

∂θ̇

)
= ml2θ̈

– ∂L

∂θ
= −mgl sin θ

– Plugging in, we get ml2θ̈ − (−mgl sin θ) = 0 =⇒ θ̈ + g

l
sin θ = 0, exactly what we get with

Newtonian mechanics
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