Lecture 6, Jan 24, 2022

Hydrogen Atom

• In our infinite well there is only 1 degree of freedom so we only have E_n ; in higher dimensions, more degrees of freedom create more quantum numbers, so we have $E_{n,m}$, etc

• In 3D the TISE becomes
$$-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \psi(x, y, z) + V(x, y, z)\psi(x, y, z) = -\frac{\hbar^2}{2m} \nabla^2 \psi + V = E_{2M}$$

- $E\psi$ - ∇^2 is the Laplacian - $-\frac{\hbar^2}{\nabla^2}\nabla^2 + V$ is the t
- $-\frac{\hbar^2}{2m}\nabla^2 + V$ is the total energy operator or Hamiltonian \hat{H}
- In a hydrogen atom electrons have Coulomb potential $V(r) = -\frac{e^2}{4\pi\varepsilon_0 r}$
- Use spherical coordinates (r, θ, ϕ) (θ is angle from z axis, ϕ is rotation in the x-y plane)
 - We also need to transform the Laplacian $\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\left(\frac{\partial^2}{\partial \theta^2} + \cot\theta\frac{\partial}{\partial \theta} + \csc^2\theta\frac{\partial^2}{\partial \phi^2}\right)$
- Again use separation of variables; assume wavefunction is a product of $\phi(\mathbf{r}) = \phi(r, \theta, \phi) = R(r)Y(\theta, \phi)$ - This allows us to take advantage of radial symmetry for the hydrogen atom since Coulomb potential
 - only depends on r
 - This gives us two equations; do this a second time, $Y(\theta, \phi) = \Theta(\theta) \Phi(\phi)$
 - Azimuthal equation: $\frac{1}{\Phi} \frac{\mathrm{d}^2 \Phi}{\mathrm{d}\phi^2} + B = 0$
 - * This is easy to solve with trial solution $Ke^{im\phi}$ where $B = -m^2$
 - Solving for the energy eigenvalues gives the Bohr model
- Takeaway: the wavefunction is defined by 3 quantum numbers n, l, m for the 3 spacial degrees of freedom, and one m_s quantum number for the spin of the electron
 - n Principal quantum number: Gives the Bohr model solution, for a spherical model it is the solution
 - * $n = 1, 2, 3, \cdots$
 - * Designation: K, L, M, N shells corresponding to $n = 1, 2, 3, \cdots$
 - * Distance from the nucleus
 - -
l (Subsidiary) Orbital angular momentum quantum number
 - * $l = 0, 1, 2, \cdots, n-1$
 - * $s \to 0, p \to 1, d \to 2, f \to 3$
 - * Distribution/shape of electron density
 - $-m_l$ Magnetic quantum number
 - * $m_l = -l, -l+1, \cdots, 0, \cdots, l-1, l$
 - * This and l describe orientation
 - $-m_s$ Spin quantum number (quantized either up or down)

$$m_s = \pm \frac{1}{2}$$
 for each m_t

*