Lecture 31, Apr 14, 2022

Review

- Chapter 2, 3, 6: Mechanical properties (metals)
 - Stress strain curves
 - Young's Modulus
 - Elastic vs. inelastic behaviour
 - 3-point bends
 - Tensile, yield strength, 0.2% offset for metals
- Chapter 7: Strengthening mechanisms
 - Defects: 0D (substitutional, interstitial, vacancies), 1D (edge, screw dislocations), 2D (grain boundaries), 3D (secondary phases)
 - Strengthening mechanisms for metals:
 - 1. Work hardening (introducing 1D defects, deforming the metal)
 - 2. Solid solution hardening (introducing of 0D defects, e.g. steel)
 - 3. Precipitation hardening (introducing second phase 3D defects)
 - 4. Grain refinement (introducing 2D grain boundaries, e.g. making amorphous metals)
- Chapter 8: Polymers
 - Calculating molecular weights
 - 5 mer units:
 - 1. Polyethylene
 - 2. Polypropylene
 - 3. Polyvinyl chloride
 - 4. Polytetrafluoroethlene (PTFE)
 - 5. Polymethylmethacrylate (PMMA)
 - Structure:
 - * Mer unit
 - * Crystallinity
 - * Molecular weight
 - * Dispersivity (i.e. width of the weight distribution)
 - * Branching (e.g. HDPE vs LDPE)
 - * Cross-linking and elastomers
 - * Tacticity
 - Physical properties:
 - * Mechanical properties
 - * Density
 - * Melting point
 - * Glass transition temperature
 - * Viscoelasticity
 - * Optical transparency
- Chapter 9: Electronic properties EM spectrum: $\nu = \frac{c}{\lambda}, E = h\nu$

- * Visible light: 400nm to 700nm
- Types of bonding:
 - * Ionic bonding (e.g. NaCl)
 - Hard sphere model
 - Coulomb model
 - Madelung constant
 - * Covalent bonding
 - * Metallic
 - * Van der Waals
 - * Mixed ionic/covalent, e.g. GaAs is mostly covalent but has an ionic part
- Electronic structure

- Metals vs nonmetals: partially vs completely filled bands
- Semiconductors, conductance calculations, band gap

 - * Resistivity $R = \rho \frac{L}{A}$ * Conductance $\sigma = ne\mu_e + pe\mu_h$ * Group 3 vs group 5 elements

 - * N vs P type doping
- Optical absorption
- Crystal structure: BCC, FCC for metals, NaCl and CsCl structures for ionic compounds, diamond cubic (silicon, germanium) or zincblende for semiconductors