Lecture 30, Apr 11, 2022

Resistance and Resistivity

- Resistance is a property of a certain object, resistivity is a material property (resistance depends on length, area, etc)
- Resistivity is defined as $\rho = R \frac{A}{l}$ in units of Ω m Resistance is proportional to length and inversely proportional to cross sectional area
- Conductivity is defined as $\sigma = \frac{1}{\rho}$ in units of Ω^{-1}/m
- For a metal, $\sigma = ne\mu_e$, where n is the density of free electrons (or holes in some rare cases) in m^{-3} , e is the electron charge, μ_e is the electron mobility (units of m^2/Vs)

Semiconductors

- For an intrinsic semiconductor (i.e. no additives), charge is carried by both holes and free electrons in the valence band; $\sigma = n_i e(\mu_e + \mu_h)$ where μ_e and μ_h are the electron and hole mobilities
 - Increasing the temperature increases the charge density; $n_i \propto e^{-\frac{E_g}{2kT}}$ where E_g is the band gap, k the Boltzmann constant, and T the temperature in Kelvins
 - Optical absorption can also create charge carriers
 - Since charge carrier density changes with temperature, intrinsic semiconductor conductivity varies with temperature, so they're not often used
- Silicon semiconductors are tetrahedrally coordinated; if we put in a group 5 element, we get an extra electron; if we put in a group 3 element we get an extra hole
- In an extrinsic semiconductor, usually there are much more charge carriers introduced by doping, so we can approximate $\sigma = N_d e \mu_e$ for N-type (negative charge carrier) semiconductors, or $\sigma = P e \mu_h$ for P-type (positive charge carrier) semiconductors
- Example: Doping silicon with 1 part per billion arsenic
 - As is a group 5 element, so this is a N-type semiconductor
 - 1 part per billion means the electron density is one one-billionth of the atomic density for silicon
 - For silicon $N = \frac{8}{a^3} = 4.997 \times 10^{22} \text{ cm}^{-3}$ where a = 0.543 nm (8 because the diamond cubic structure has 8 atoms per unit cell)
 - So $N_d = 4.997 \times 10^{13} \,\mathrm{cm}^{-3}$
 - Using $\mu_e = 1350 \text{cm}^2/\text{V} \text{s}$ and $\mu_h = 450 \text{cm}^2 V.s, \sigma = 1.08 \times 10^{-2} \,\Omega^{-1} \text{cm}^{-1}$