Lecture 29, Apr 7, 2022

Time Independent Schrodinger Equation and Hydrogen Orbits

- $-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} = (E-V)\psi$
- If E > V then this means $\frac{\partial^2 \psi}{\partial x^2}$ and ψ have different signs; this means the wavefunction curves towards zero (if $\psi > 0$ then it curves down, if $\psi < 0$ then it curves up)
 - This means we have oscillatory solutions
 - For the simple case where V = 0 (free electron), $\psi = \sin(kx)$ or $\cos(kx)$ where $E = \frac{\hbar^2 k^2}{2m}$
- If E < V, $\frac{\partial^2 \psi}{\partial x^2}$ and ψ have the same sign; the wavefunction curves away from zero
 - This means we have exponential solutions
 - There can be 2 cases, either the solution blows up to infinity, or it decays towards zero
- In the infinite square well, in the well the solution oscillates, and outside the well the solution is always zero
- For the finite square well, in the well the solution still oscillates (E > V), but outside the well the solution decays towards zero (E < V)
 - There are a finite number of bound states (quantized states), because at some point E > V everywhere
- For the quantum harmonic oscillator $(V = bx^2)$:
 - For the n = 1 solution it resembles the finite square well
 - Since the potential gets wider as energy increase, increasing n makes the wavefunction wider
 - The place where E = V is the classical turning point
 - In this case energy levels are evenly spaced (proportional to n instead of n^2)
- For the hydrogen atom energy is proportional to $\frac{1}{n^2}$; these 3 cases above are the only cases where there is a simple expression for E based on n
- The 2s state has a larger radius than the 1s state because the classical turning point is further away

Band Theory

- When two finite potential wells are brought near each other (like when two atoms approach each other during bonding), their wavefunctions overlap
 - The n = 2 state for hydrogen is bigger so there is more overlap
- Overlapping wavefunctions create bands; with n atoms there will be n bands
- The spacing between bands doesn't arbitrarily increase, so with a very large number of atoms, there is effectively a continuous range of energy levels
- Only valence electron wavefunctions overlap and form bands

Band Structure

- Metals have a partially filled band
 - States above a certain level are unfilled, below that level are filled
 - E_F is the Fermi level, below which all energy states are filled
 - Note there's a potential barrier at the edge of a metal so the electrons don't leak out (the work function Φ)
 - Since there are states immediately above the Fermi level, electrons can easily move in an electric field, so they can conduct electricity easily
- A semiconductor has 2 bands: the valence and conduction bands
 - The valence band is fully occupied at T = 0; the conduction band is unoccupied at T = 0
 - The band gap sits between the valence and conduction bands
 - * The colour of light emitted by LEDs is the photon energy of its band gap

- Electrons can only move if they have enough energy to cross the band gap and go into the conduction band
- With enough energy, electrons leave the valence band and move into the conduction band, leaving behind a hole
 - * The hole acts like a positive charge and can be a charge carrier
- $-E_F$ for a semiconductor is usually somewhere in the band gap
- An insulator is similar to a semiconductor but the band gap is very large, making it very hard to cross
- A material appears as optically transparent if it does not absorb photons in the visible light range
 - If the band gap is large enough that photons in the visible range cannot excite electrons across the gap, then photons will not be absorbed and the material is transparent
 - For metals and other materials where the band gap is small, photons will be absorbed by electrons which jump to the conduction band, so the material is opaque