Lecture 1, Jan 10, 2022

- Materials science:
 - 1. Understanding the structure and how it relates the properties of the materials and how to process the materials to have these properties
 - 2. Based on this understanding, select the right materials and recognize design opportunities
- Example: Hip implants: with age or illnesses joints with large loads such as the hip deteriorate
 - What material should we make the implant out of?
 - A lot of load, lots of loading/unloading cycles, needs to be biocompatible (the body can't reject it), can't be too heavy
 - Modern hip implants are primarily metallic (e.g. titanium) and very complex
 - Coatings attach the implant to the bone and allow the bone to grow around it
 - A ball joint allows movement
- Materials can be engineered to have properties we want; e.g. rapid cooling steel results in increasing hardness
- Types of materials:
 - Metals:
 - * Strong and ductile
 - * Lots of free electrons make it thermally and electrically conductive, and also opaque and reflective since EM waves are cancelled out by electrons moving in the metal
 - Polymers:
 - * Covalent chains
 - * Soft, light and low strength
 - * Insulators
 - * Translucent/transparent
 - Ceramics:
 - * Ionic bonding (compounds of metallic and non-metallic elements)
 - $\,^*\,$ No free electrons, so good insulators
 - * Brittle
- The material selection process: Application \rightarrow Properties \rightarrow Candidate Materials \rightarrow Required Processing
- Adding impurities can change material properties; e.g. adding nickel to copper increases resistivity; deforming it also increases resistivity
 - Sometimes we add impurities to copper intentionally to make cables more flexible we need to balance aspects