Lecture 9, Feb 1, 2022

Basis

- Fundamental Theorem of Linear Algebra: Let \mathcal{V} be a vector space spanned by n vectors. If a set of m vectors from \mathcal{V} is linearly independent, then $m \leq n$.
 - This is equivalent to saying if m > n then any set of m vectors from \mathcal{V} is linearly dependent (this is the contrapositive statement: if $A \implies B$, then $\neg B \implies \neg A$)
 - Proof by contraposition: Let m > n, we show that this implies a set of m vectors is dependent. * Consider a set of m vectors $\{u_1, \dots, u_m\}$ and let span $\{v_1, \dots, v_n\} = \mathcal{V}$

* Since
$$\boldsymbol{u}_j \in \mathcal{V}, \, \boldsymbol{u}_j = \sum_{i=1}^n a_{ij} \boldsymbol{v}_i \text{ and so } \sum_{j=1}^m x_j \boldsymbol{u}_j = \sum_{j=1}^m x_j \left(\sum_{i=1}^n a_{ij} \boldsymbol{v}_i \right)$$
$$= \sum_{i=1}^n \left(\sum_{j=1}^m a_{ij} x_j \right) \boldsymbol{v}_i$$

* Set $\sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij} x_j \right) v_i = 0$; this will be satisfied if each $\sum_{j=1}^{m} a_{ij} x_j = 0$; this is a set of linear

equations Ax = 0 where A is $n \times m$; since we have m > n there are infinite number of solutions to this system, i.e. there exist a nontrivial solution, therefore not all x_j have to be 0, so the set $\{u_1, \dots, u_m\}$ is linearly dependent

- Define the *basis* for a vectors space \mathcal{V} to be a set of vectors $\{e_1, e_2, \cdots, e_n\}$ that are linearly independent and span $\{e_1, e_2, \cdots, e_m\} = \mathcal{V}$
 - Every basis for a given vector space contains the same number of vectors:
 - * Let $E = \{ e_1, e_2, \dots, e_n \}$ and $F = \{ f_1, f_2, \dots, f_n \}$ be bases
 - * Consider E to be linearly independent and F to span \mathcal{V} , then by the fundamental theorem $n \leq m$; consider F to be linearly independent and E to span \mathcal{V} , then by the fundamental theorem $m \leq n$, therefore m = n
 - We say that a basis generates \mathcal{V}
- Definition: The *dimension* of a vector space \mathcal{V} , denoted dim \mathcal{V} , is the number of vectors in any of its bases
 - Note: Define dim $\{\mathbf{0}\} = 0$