Lecture 8, Jan 31, 2022

Equivalence of Spans

- We can show equivalence of sets U = V by showing $U \subseteq V$ and $V \subseteq U$
- To show equivalence of spans, we do the same and show both spans are subsets of the other
 - It is sufficient to show that each member of the spanning set is in the other span; if $u_i = \sum \alpha_{ik} v_k$,

then
$$\boldsymbol{u} = \sum_{i=1}^{m} \lambda_i \boldsymbol{u}_i = \sum_{i=1}^{m} \lambda_i \left(\sum_{k=1}^{n} \alpha_{ik} \boldsymbol{v}_k \right) = \sum_{k=1}^{n} \left(\sum_{i=1}^{m} \right) \boldsymbol{v}_k = \sum_{k=1}^{n} \mu_k \boldsymbol{v}_k \implies \boldsymbol{u} \in \operatorname{span} \{ \boldsymbol{v}_j \}$$

sple: span $\{ \boldsymbol{u}, \boldsymbol{v} \} = \operatorname{span} \{ \boldsymbol{u} + \boldsymbol{v}, \boldsymbol{u} - \boldsymbol{v} \}$?

- Example: span { u, v } = span { u + v, u v }?
 { u + v, u v } ⊆ span { u, v } since they're both linear combinations of u and v
 { u, v } ⊆ span { u + v, u v } since u = 1/2(u + v) + 1/2(u v) and v = 1/2(u + v) 1/2(u v)
 Proposition II: Let U = span { v₁, v₂, ..., v_n } ⊑ V. If W is a subspace of V containing the vectors
- span { v_1, v_2, \cdots, v_n } then $\mathcal{U} \sqsubseteq \mathcal{W}$.
 - Any vector in \mathcal{U} is a linear combination of those vectors, and since those vectors are in \mathcal{W}, \mathcal{W} contains all linear combinations of those vectors

Linear Independence

• Linear independence: A set of vectors span $\{v_1, v_2, \cdots, v_n\}$ is *linearly independent* if and only if $\frac{n}{2}$

$$\sum_{j=1}^{n} \lambda_j \boldsymbol{v}_j = \boldsymbol{0} \implies \lambda_j = \boldsymbol{0}$$

$$- \text{Example:} \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\} \text{ are independent: } \lambda_1 \begin{bmatrix} 1\\0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix} \implies \begin{bmatrix} \lambda_1\\\lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix} \implies \lambda_1 = \lambda_2 = 0$$

$$- \text{Example:} \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\} \text{ are not independent: } \lambda_1 \begin{bmatrix} 1\\0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0\\1 \end{bmatrix} + \lambda_3 \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix} \text{ can be satisfied}$$

$$\text{with } \begin{cases} \lambda_1 = 1\\\lambda_2 = 1\\\lambda_3 = -1 \end{cases}$$

- Proposition I: If $\{v_1, v_2, \cdots, v_n\} \subset \mathcal{V}$ is linearly independent and $v = \sum_{j=1}^n \lambda_j v_j$ for all $v \in \mathcal{V}$ then λ_j are uniquely determined, i.e. there is only one way to construct any vector
 - Proof: Assume that λ_j are not uniquely determined. Let $\boldsymbol{v} = \sum_{i=1}^n \lambda_j \boldsymbol{v}_j = \sum_{i=1}^n \mu_j \boldsymbol{v}_j$ then $\boldsymbol{0} =$

$$\boldsymbol{v} - \boldsymbol{v} = \sum_{j=1}^{n} (\lambda_j - \mu_j) = \boldsymbol{v}_j$$
 and because the set is linearly independent $\lambda_j - \mu_j = 0 \implies \lambda_j = \mu_j$,

so λ_i are uniquely determined

- This generalizes to any kind of vector, e.g. functions
 - e.g. to show $\{\sin x, \cos x\}$ are linearly independent we show $\lambda_1 f + \lambda_2 g = z \implies \lambda_1 = \lambda_2 = 0$ where $z : \mathbb{R} \mapsto \{0\}$
 - * We want to show $\lambda_1 \cos x + \lambda_2 \sin x = 0 \forall x \in \mathbb{R}$; we can consider $x = 0 \implies \lambda 1 = 0$, and $x = \frac{\pi}{2} \implies \lambda_2 = 0$