Lecture 6, Jan 25, 2022

Subspaces

- A subset \mathcal{U} of \mathcal{V} is a subspace of \mathcal{V} iff \mathcal{U} is itself a vector space over the same field Γ with the same vector addition and scalar multiplication operations of \mathcal{V}
 - $X \subseteq Y \iff \forall x \in X \implies x \in Y$
 - In this case the subset is not strict, i.e. $\mathcal{U} = \mathcal{V}$ is allowed
 - Every \mathcal{V} has two subspaces, the space itself, and the subspace of only zero: $\mathcal{U} = V$ and $\mathcal{U} = \{0\}$
 - Sometimes the notation $\mathcal{U} \sqsubseteq \mathcal{V}$ is used
- Theorem 1: Subspace test: $\mathcal{U} \sqsubseteq \mathcal{V}$ iff for all $u, v \in \mathcal{U}$ and all $\alpha \in \Gamma$:
 - 1. Zero: $\exists \mathbf{0} \in \mathcal{U} \ni \mathbf{u} + \mathbf{0} = \mathbf{u}$
 - 2. Closure under addition: $\boldsymbol{u} + \boldsymbol{v} \in \mathcal{U}$
 - 3. Closure under scalar multiplication: $\alpha \boldsymbol{u} \in \mathcal{U}$
- Proof of the subspace test:
 - $-\mathcal{U} \sqsubseteq \mathcal{V} \implies (\mathcal{SI}, \mathcal{SII}, \mathcal{SIII})$: By definition \mathcal{U} is a vector space, therefore it automatically satisfies all 3 axioms
 - $(\mathcal{SI}, \mathcal{SII}, \mathcal{SIII}) \implies \mathcal{U} \sqsubseteq \mathcal{V}:$
 - * \mathcal{AI} : Implied by \mathcal{SII}
 - * \mathcal{AII} : Automatically true since $u \in \mathcal{U} \implies u \in \mathcal{V}$ and the addition operator is associative in \mathcal{V} (i.e. inherited from \mathcal{V})
 - * \mathcal{AIII} : Implied by \mathcal{SI}
 - * \mathcal{AIV} : We have proven previously that (-1)u is the additive inverse of u; we also know $(-1)u \in \mathcal{U}$ by \mathcal{SIII} , so an inverse exists
 - * \mathcal{MI} : Implied by \mathcal{SIII}
 - * $\mathcal{MII} \mathcal{MIII}$: Inherited from \mathcal{V}
 - * \mathcal{MIV} : $1u \in \mathcal{U}$ by \mathcal{SIII} and $u \in \mathcal{V}$ so $1u = u \in \mathcal{U}$
- Example: im $A = \{ \boldsymbol{y} \mid \boldsymbol{y} = \boldsymbol{A} \boldsymbol{x} \forall \boldsymbol{x} \in {}^{n} \mathbb{R} \} \subseteq {}^{m} \mathbb{R} \text{ for } \boldsymbol{A} \in {}^{m} \mathbb{R}{}^{n}$
 - Since ${}^m\mathbb{R}$ is a vector space over \mathbb{R} we only need to do the subspace test
 - SI: Satisfied since $\mathbf{0} = A\mathbf{0} \implies \mathbf{0} \in \operatorname{im} A$
 - $\mathcal{SII}: \boldsymbol{y}_1, \boldsymbol{y}_2 \in \operatorname{im} \boldsymbol{A} \implies \boldsymbol{y}_1 = \boldsymbol{A} \boldsymbol{x}_1, \boldsymbol{y}_2 = \boldsymbol{A} \boldsymbol{x}_2 \implies \boldsymbol{y}_1 + \boldsymbol{y}_2 = \boldsymbol{A} (\boldsymbol{x}_1 + \boldsymbol{x}_2)$
 - $\mathcal{SIII}: \boldsymbol{y} \in \operatorname{im} \boldsymbol{A} \implies \boldsymbol{y} = \boldsymbol{A}\boldsymbol{x} \implies \alpha \boldsymbol{y} = \alpha(\boldsymbol{A}\boldsymbol{x}) = \boldsymbol{A}(\alpha \boldsymbol{x}) \in \operatorname{im} \boldsymbol{A}$
- Example: ker $\mathbf{A} = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}$ for $\mathbf{A} \in {}^m \mathbb{R}^n$ (kernel or null space of A)
 - $-x \in {}^{n}\mathbb{R}$ so we can apply the subspace test
 - \mathcal{SI} : $\mathbf{0} \in \ker \mathbf{A}$ because $\mathbf{A0} = \mathbf{0}$
 - $-\mathcal{SI}: \mathbf{A}(\mathbf{x}_1 + \mathbf{x}_2) = \mathbf{A}\mathbf{x}_1 + \mathbf{A}\mathbf{x}_2 = \mathbf{0} + \mathbf{0} = \mathbf{0} \implies \mathbf{x}_1 + \mathbf{x}_2 \in \ker \mathbf{A}$
 - SIII: $A(\alpha x) = \alpha(Ax) = \alpha 0 = 0 \implies \alpha x \in \ker A$