Lecture 5, Jan 24, 2022

More Vector Space Properties

• Proposition V: Properties of zero: For all $v \in \mathcal{V}$ and all $\alpha \in \Gamma$: 1. 0v = 0 $-0\mathbf{v} = 0\mathbf{v} + \mathbf{0}$ by \mathcal{AIII} $-0\mathbf{v} = (0+0)\mathbf{v} = 0\mathbf{v} + 0\mathbf{v}$ by $\mathcal{MIII}(a)$ and scalar addition properties - By the transitive property $0\mathbf{v} + \mathbf{0} = 0\mathbf{v} + 0\mathbf{v}$, then by the cancellation theorem $0\mathbf{v} = \mathbf{0}$ 2. $\alpha 0 = 0$ $-\alpha \mathbf{0} = \alpha (\mathbf{0} + \mathbf{0}) = \alpha \mathbf{0} + \alpha \mathbf{0}$ - Rest of the proof follows like above 3. If $\alpha \boldsymbol{v} = \boldsymbol{0}$ then either $\alpha = 0$ or $\boldsymbol{v} = \boldsymbol{0}$ - Either $\alpha = 0$ or $\alpha \neq 0$; if $\alpha = 0$ then $0\mathbf{v} = \mathbf{0}$ follows by 1, so we only need to consider $\alpha \neq 0$ - v = 1vMIV $= (\alpha^{-1}\alpha)\boldsymbol{v}$ Properties of scalars $= \alpha^{-1}(\alpha \boldsymbol{v})$ \mathcal{MII} $= \alpha^{-1} \mathbf{0}$ Given **= 0** Prop. V.2 – Therefore either $\alpha = 0$, or if $\alpha \neq 0$, then $\boldsymbol{v} = \boldsymbol{0}$ • Proposition VI: For all $\boldsymbol{v} \in \mathcal{V}$ and $\alpha \in \Gamma$, $(-\alpha)\boldsymbol{v} = -(\alpha \boldsymbol{v}) = \alpha(-\boldsymbol{v})$ MIII(a) $-\alpha \boldsymbol{v} + (-\alpha \boldsymbol{v}) = (\alpha - \alpha)\boldsymbol{v}$ $= 0\boldsymbol{v}$ Properties of scalars Prop. V.1 = 0- Since $\alpha v + (-(\alpha v)) = 0$ by \mathcal{AIII} , by the transitive property and cancellation $-(\alpha v) = (-\alpha)v$ $-\alpha \boldsymbol{v} + \alpha(-\boldsymbol{v}) = \alpha(\boldsymbol{v} - \boldsymbol{v})$ $\mathcal{MIII}(b)$ $= \alpha \mathbf{0}$ \mathcal{AIV} = 0Prop. V.2 - It follows then that $\alpha(-\boldsymbol{v}) = -(\alpha \boldsymbol{v}) = (-\alpha \boldsymbol{v})$ - Consider $\alpha = 1$, then -(1v) = -v = (-1)v, so the additive inverse is always -1 times the vector!