Lecture 4, Jan 18, 2022

Commutativity and Other Properties of Vector Spaces

- What about the associative property u + v = v + u?
 - This can be proven from the other properties, but first we will start with some other axioms
- There are some axioms that are one sided such as AIII and AIV (additive identity and inverse); we will prove that these are two sided under the other axioms
- Proposition I: For every $u, -u \in \mathcal{V}, -u + u = 0$ (i.e. property \mathcal{AIV} but commutative) - Proof: -u + u = (-u + u) + 0 \mathcal{AIII}

$oldsymbol{u} = (-oldsymbol{u} + oldsymbol{u}) + oldsymbol{0}$	\mathcal{AIII}
= (-u + u) + (-u + (-(-u)))	\mathcal{AIV}
= -u + (u + (-u)) + (-(-u))	\mathcal{AII}
$= -\boldsymbol{u} + \boldsymbol{0} + (-(-\boldsymbol{u}))$	\mathcal{AIV}
$= -oldsymbol{u} + (-(-oldsymbol{u}))$	\mathcal{AIII}
= 0	\mathcal{AIV}
	1 1

- Thus \mathcal{AIV} is commutative, and we can say that the additive inverse of -u is just u

• Proposition II: For every $u \in \mathcal{V}, \mathbf{0} + \mathbf{u} = \mathbf{u}$ (i.e. property \mathcal{AIII} but commutative)

- Proof: $\mathbf{0} + \boldsymbol{u} = (\boldsymbol{u} + (-\boldsymbol{u})) + \boldsymbol{u}$ \mathcal{AIV}

$= \boldsymbol{u} + (-\boldsymbol{u} + \boldsymbol{u})$	\mathcal{AII}
= u + 0	Prop. I
= u	\mathcal{AIII}

• Theorem I: Cancellation theorem: If u + w = v + w then u + v for any $u, v, w \in \mathcal{V}$ (this also applies for w + u = w + v)

- Proof: $\boldsymbol{u} = \boldsymbol{u} + \boldsymbol{0}$	\mathcal{AIII}
$= oldsymbol{u} + (oldsymbol{w} + -oldsymbol{w})$	\mathcal{AIV}
$= (oldsymbol{u} + oldsymbol{w}) + (-oldsymbol{w})$	\mathcal{AII}
$= (oldsymbol{v} + oldsymbol{w}) + (-oldsymbol{w})$	given
$= oldsymbol{v} + (oldsymbol{w} + (-oldsymbol{w}))$	\mathcal{AII}
= v + 0	\mathcal{AIV}
= v	AIII

- Note: a *theorem* and *proposition* are basically the same thing here, but typically theorem is used for bigger results
- Define subtraction: $\boldsymbol{u} \boldsymbol{v} = \boldsymbol{u} + (-\boldsymbol{v})$
- Proposition III:
 - 1. The zero $\mathbf{0} \in \mathcal{V}$ is unique

– Proof: Let $\mathbf{0}'$ be another zero, then $\mathbf{u} + \mathbf{0}' = \mathbf{u} = \mathbf{u} + \mathbf{0}$ so by the cancellation theorem, $\mathbf{0}' = \mathbf{0}$ 2. The inverse is unique

- 3. -(-u) = u
- Proposition IV: For $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{V}, \boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u}$

- Proof:
$$\mathbf{u} + \mathbf{v} = \mathbf{0} + (\mathbf{u} + \mathbf{v}) + \mathbf{0}$$

= $(-\mathbf{v} + \mathbf{v}) + (\mathbf{u} + \mathbf{v}) + (\mathbf{u} + (-\mathbf{u}))$
= $-\mathbf{v} + ((\mathbf{v} + \mathbf{u}) + (\mathbf{v} + \mathbf{u})) + (-\mathbf{u})$
= $-\mathbf{v} + (1(\mathbf{v} + \mathbf{u}) + 1(\mathbf{v} + \mathbf{u})) + (-\mathbf{u})$
= $-\mathbf{v} + (1 + 1)(\mathbf{v} + \mathbf{u}) + (-\mathbf{u})$
= $-\mathbf{v} + ((1 + 1)\mathbf{v} + (1 + 1)\mathbf{u}) + (-\mathbf{u})$
= $-\mathbf{v} + (1\mathbf{v} + 1\mathbf{v} + 1\mathbf{u} + 1\mathbf{u}) + (-\mathbf{u})$
= $-\mathbf{v} + (\mathbf{v} + \mathbf{v} + \mathbf{u} + \mathbf{u}) + (-\mathbf{u})$
= $-\mathbf{v} + (\mathbf{v} + \mathbf{v} + \mathbf{u} + \mathbf{u}) + (-\mathbf{u})$
= $-\mathbf{v} + (\mathbf{v} + \mathbf{v} + \mathbf{u} + \mathbf{u}) + (-\mathbf{u})$
= $(-\mathbf{v} + \mathbf{v}) + \mathbf{v} + \mathbf{u} + (\mathbf{u} + (-\mathbf{u}))$
= $\mathbf{0} + \mathbf{v} + \mathbf{u} + \mathbf{0}$
= $\mathbf{v} + \mathbf{u}$
Prop. I and \mathcal{AIII}