Lecture 34, Apr 8, 2022

The Matrix Exponential

- Consider the scalar case where exp x = ∑_{k=0}[∞] x^k/k!
 Let X ∈ ⁿℝⁿ, then define e^X = exp X = ∑_{k=0}[∞] X^k/k!
- - Note we have to define $X^0 = 1$
- We know that in the scalar case $\dot{x} = ax$ has solution $x(t) = x_0 e^{at}$; can we do the same for the matrix exponential?

•
$$e^{At} = \sum_{k=0}^{\infty} \frac{A^k}{k!} t^k \implies \frac{\mathrm{d}}{\mathrm{d}t} e^{At} = \sum_{k=1}^{\infty} \frac{A^k}{(k-1)!} t^{k-1} = \sum_{k=0}^{\infty} \frac{A^{k+1}}{k!} t^k = A \sum_{k=0}^{\infty} \frac{A^k}{k!} t^k = A e^{At}$$

Therefore in the general access of \dot{c} . An $\sigma(0)$, σ the solution is e^{At}

- Therefore in the general case of \$\bar{x} = Ax\$, \$\mathbf{x}(0) = \mathbf{x}_0\$ the solution is \$e^{At}\$\mathbf{x}_0\$
 How do we actually compute \$e^{At}\$?

• Using

- If \boldsymbol{A} is diagonalizable, then $\boldsymbol{A} = \boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{-1}$, so $\boldsymbol{A}^n = (\boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{-1})(\boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{-1}) \cdots (\boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{-1}) = \boldsymbol{P} \boldsymbol{\Lambda}^n \boldsymbol{P}^{-1}$ $- \Lambda^n$ is easy to compute, since Λ is diagonal, we simply take the diaongal entries to the nth power

this result,
$$e^{\mathbf{A}t} = \sum_{k=0}^{\infty} \mathbf{P} \frac{\mathbf{\Lambda}^{n}}{k!} \mathbf{P}^{-1} t^{k}$$

 $= \mathbf{P} \left(\sum_{k=0}^{\infty} \frac{\mathbf{\Lambda}^{k}}{k!} t^{k} \right) \mathbf{P}^{-1}$
 $= \mathbf{P} e^{\mathbf{\Lambda} t} \mathbf{P}^{-1}$
 $= \mathbf{P} \begin{bmatrix} \sum_{k=0}^{\infty} \frac{\lambda_{2}^{k}}{k!} t^{k} & 0 & \cdots \\ 0 & \sum_{k=0}^{\infty} \frac{\lambda_{2}^{k}}{k!} t^{k} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \mathbf{P}^{-1}$
 $= \mathbf{P} \begin{bmatrix} e^{\lambda_{1}t} & 0 & \cdots \\ 0 & e^{\lambda_{2}t} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \mathbf{P}^{-1}$