Lecture 32, Apr 4, 2022

The Diagonalization Test

- Theorem VI: Diagonalization Test: Let $A \in {}^{n}\mathbb{R}^{n}$ with distinct eigenvalues $\lambda_{1}, \dots, \lambda_{r}$, then A is diagonalizable if and only if $\forall \alpha, m_{\alpha} = n_{\alpha}$, where m_{α} is the geometric multiplicity and n_{α} is the algebraic multiplicity
 - Proof: $[\implies]$ Let **A** be diagonalizable, then:
 - * If **A** is diagonalizable then there are *n* linearly independent eigenvectors; let $E = E_{\lambda_1} \cup \cdots \cup E_{\lambda_r}$ be a linearly independent set of eigenvectors where $E_{\lambda_{\alpha}}$ is a basis for each eigenspace
 - * Since E is a basis for ${}^{n}\mathbb{R}$, we have n = |E| where E is the cardinality of E (i.e. number of elements) rrr

* Since
$$E_{\lambda_i} \cap E_{\lambda_j} = \emptyset$$
, so then $n = |E| = \sum_{\alpha=1}^{r} |E_{\lambda_\alpha}| = \sum_{\alpha=1}^{r} m_\alpha \le \sum_{\alpha=1}^{r} n_\alpha = n$
• Note $n_1 + n_2 + \dots + n_r = n$

• Note
$$n_1 + n_2 + \cdots + n_r =$$

* Therefore $\sum_{\alpha=1}^{i} m_{\alpha} = \sum_{\alpha=1}^{i} n_{\alpha}$, and since $m_{\alpha} \leq n_{\alpha}$ we must have $m_{\alpha} = n_{\alpha}$ for all α proof: $[\Leftarrow]$ For $m_{\alpha} = n_{\alpha} \forall \alpha$. _ Pr

Proof: [
$$\Leftarrow$$
] For $m_{\alpha} = n\alpha, \forall \alpha$:
* $|E| = \sum_{\alpha=1}^{r} |E_{\lambda_{\alpha}}| = \sum_{\alpha=1}^{r} m_{\alpha} = \sum_{\alpha=1}^{r} n_{\alpha} = n$

* Since |E| = n there are n linearly independent eigenvectors, which span and form a basis for ${}^{n}\mathbb{R}$, so **A** is diagonalizable