Lecture 31, Apr 1, 2022

Criteria for Diagonalizability

- $m_1 + m_2 + \cdots + m_r \le n$ where $m_{\alpha} = \dim \mathcal{E}_{\lambda_{\alpha}}$ for $\mathbf{A} \in {}^n \mathbb{R}^n$
 - Proof: Let $\{p_{\alpha,j}\}$ be a set of eigenvectors in $H_{\lambda_{\alpha}}$; $m_1 + \cdots + m_r$ is the total number of vectors in $H_{\lambda_1} \cup \cdots \cup H_{\lambda_n}$; this cannot exceed n as that would violate the fundamental theorem
 - Corollary: If $m_1 + \cdots + m_r = n$, then **A** is diagonalizable
- Definition: Let $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$ have eigenvalues λ_{α} ; then the algebraic multiplicity of λ_{α} is n_{α} , the highest power of $(\lambda - \lambda_{\alpha})$ that divides the characteristic equation for **A**
 - i.e. the algebraic multiplicity of λ_{α} is the number of times λ_{α} appears as a root of the characteristic polynomial
- Definition: The geometric multiplicity of λ_{α} is $m_{\alpha} = \dim \mathscr{E}_{\lambda_{\alpha}}$, i.e. the dimension of its eigenspace
 - Theorem VI: Diagonalization Test: $m_{\alpha} = n_{\alpha}$ for all α if and only if the matrix is diagonalizable (proven next lecture)
- Proposition III: Let $A = \begin{bmatrix} \mathbf{1} & B \\ \mathbf{0} & C \end{bmatrix} \in {}^{n}\mathbb{R}^{n}$ and $\mathbf{1} \in {}^{r}\mathbb{R}^{r}$ (and $C \in {}^{n-r}\mathbb{R}^{n-r}$), then $\det A = \det C$ Take A and reduce it into $A' = \begin{bmatrix} \mathbf{1} & B' \\ \mathbf{0} & C' \end{bmatrix}$ where C is upper triangular
 - - * We can do this by some E without having to multiply any row by a scalar since we don't need the leading entries to be 1
 - $-\det(\mathbf{A}') = \det(\mathbf{C}') = (-1)^p \det(\mathbf{C})$
 - $-\det(\mathbf{A}') = (-1)^p \det(\mathbf{A})$ since the same operations were performed on \mathbf{A}
 - The minus signs cancel so $\det(\mathbf{A}) = \det(\mathbf{C})$
- Theorem V: Multiplicity Theorem: $1 \le m_{\alpha} \le n_{\alpha}$
 - Proof: Consider λ_{α} ; Let $F = \{ f_1, \dots, f_{m_{\alpha}} \}$ be a basis for $\mathscr{E}_{\lambda_{\alpha}}$ where $m_{\alpha} = \dim \mathscr{E}_{\lambda_{\alpha}}$
 - * We can extend this basis for a basis for ${}^{n}\mathbb{R}$
 - * Let Q be the transition matrix from F to $E_0 = \{e_1, \dots, e_{m_0}, \dots, e_n\}$, the standard basis
 - for ${}^{n}\mathbb{R}$, then $\mathbf{Q} = \begin{bmatrix} \mathbf{f}_{1} & \cdots & \mathbf{f}_{n} \end{bmatrix}$ and $\mathbf{Q}\mathbf{e}_{\alpha} = \mathbf{f}_{\alpha}$, i.e. $\mathbf{Q}^{-1}\mathbf{f}_{\alpha} = \mathbf{e}_{\alpha}$ * Consider $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}\mathbf{e}_{j_{\alpha}} = \mathbf{Q}^{-1}\mathbf{A}\mathbf{f}_{j_{\alpha}} = \lambda_{\alpha}\mathbf{Q}^{-1}\mathbf{f}_{j\alpha} = \lambda_{\alpha}\mathbf{e}_{j_{\alpha}}$ where $j_{\alpha} = 1, \cdots, m_{\alpha}$
 - * So $Q^{-1}AQ = \begin{bmatrix} \lambda_{\alpha} \mathbf{1} & B \\ 0 & C \end{bmatrix}$ where $\mathbf{1} \in {}^{m_{\alpha}}\mathbb{R}^{m_{\alpha}}$ since using the standard basis vectors we can pick out the λ_{α} for the first m_{α} columns
 - * Consider $c_{\mathbf{A}}(\lambda) = c_{\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}}(\lambda)$

$$= \det \begin{bmatrix} (\lambda - \lambda_{\alpha}) \mathbf{1} & -\mathbf{B} \\ \mathbf{0} & \lambda \mathbf{1} - \mathbf{C} \end{bmatrix}$$
$$= (\lambda - \lambda_{\alpha})^{m_{\alpha}} \det \begin{bmatrix} \mathbf{1} & -\mathbf{B} \\ \mathbf{0} & \lambda \mathbf{1} - \mathbf{C} \end{bmatrix}$$
$$= (\lambda - \lambda_{\alpha})^{m_{\alpha}} \det(\lambda \mathbf{1} - \mathbf{C})$$

- Note the first line relies on the similarity transformation preserving the characteristic equation
- The last line relies on Prop. III
- * This shows us that we have to have at least m_{α} repeated roots of λ_{α} , so $m_{\alpha} \leq n_{\alpha}$
- * Since every eigenspace must have at least one nontrivial eigenvector $m_{\alpha} \geq 1$