Lecture 3, Jan 17, 2022

Vector Spaces, Continued

- Consider: { $(x, y) | x, yin\mathbb{R}$ } with the operations defined as $(x_1, y_1) + (x_2, y_2) \equiv (x_1 + x_2, y_1 + y_2 + 1)$ and $\alpha(x, y) \equiv (\alpha x, \alpha y + \alpha 1)$
 - Zero is (0, -1)
 - Inverse is (-x, -y 2)
 - Actually distributive
 - Since all axioms hold this is actually a vector space