Lecture 29, Mar 28, 2022

Diagonalization Properties

- Proposition II: Let $A, T \in {}^{n}\mathbb{R}^{n}$ and T be invertible, then A and $T^{-1}AT$ have the same characteristic polynomial and therefore same eigenvalues
 - $T^{-1}AT$ is known as a similarity transformation of A- Proof: $\det(\lambda \mathbf{1} - T^{-1}AT)$ = $\det(\lambda T^{-1}T - T^{-1}AT)$ = $\det(T^{-1}(\lambda \mathbf{1} - A)T)$ = $\det(T^{-1})\det(\lambda \mathbf{1} - A)\det(T)$ = $\det(\lambda \mathbf{1} - A)$
- Theorem II: Let $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$ be diagonalizable; then:
 - 1. The characteristic equation for \boldsymbol{A} can be written as $c_{\boldsymbol{A}}(\lambda) = \det(\lambda \mathbf{1} \boldsymbol{A}) = \prod_{\alpha=1}^{n} (\lambda \lambda_{\alpha})$ - If \boldsymbol{A} is diagonalized by \boldsymbol{P} then $c_{\boldsymbol{A}}(\lambda) = c_{\boldsymbol{B}}(\lambda) = c_{\boldsymbol{A}}(\lambda)$

- If
$$\boldsymbol{A}$$
 is diagonalized by \boldsymbol{P} then $c_{\boldsymbol{A}}(\lambda) = c_{\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}}(\lambda) = c_{\boldsymbol{\Lambda}}(\lambda)$
2. $\det(\boldsymbol{A}) = \prod_{\alpha=1}^{n} \lambda_{\alpha}$
- Proof: $\boldsymbol{A} = \boldsymbol{P}\boldsymbol{\Lambda}\boldsymbol{P}^{-1} \implies \det(\boldsymbol{A}) = \det(\boldsymbol{P}\boldsymbol{\Lambda}\boldsymbol{P}^{-1})$
 $= \det(\boldsymbol{P})\det(\boldsymbol{\Lambda})\det(\boldsymbol{P}^{-1})$
 $= \det(\boldsymbol{\Lambda})$
 $= \prod_{\alpha=1}^{n} (\lambda - \lambda_{\alpha})$
3. $\operatorname{tr} \boldsymbol{A} = \sum_{\alpha=1}^{n} \lambda_{\alpha}$

- Proof: tr
$$\boldsymbol{A}$$
 = tr($\boldsymbol{P}\boldsymbol{\Lambda}\boldsymbol{P}^{-1}$) = tr($\boldsymbol{P}\boldsymbol{P}^{-1}\boldsymbol{\Lambda}$) = tr($\boldsymbol{\Lambda}$) = $\sum_{\alpha=1}^{n} \lambda_{\alpha}$

- Note $\operatorname{tr}(\boldsymbol{ST}) = \operatorname{tr}(\boldsymbol{TS})$

- Theorem II holds for all matrices, even ones that are not diagonalizable, we just currently cannot prove it
- It's important to note that repeated eigenvalues are counted multiple times