Lecture 28, Mar 25, 2022

Properties of Eigenvalues and Eigenvectors

- If $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, the eigenvalues satisfy $\lambda^2 (a_{11} + a_{22})\lambda + (a_{11}a_{22} a_{12}a_{21}) = \lambda^2 (\operatorname{tr} \mathbf{A})\lambda + \det \mathbf{A} = 0$ In general, for $\mathbf{A} \in {}^n \mathbb{R}^n$, $\lambda^n (\operatorname{tr} \mathbf{A})\lambda^{n-1} + \dots + (-1)^n \det \mathbf{A} = 0$
- Proposition I: Let λ, μ be two distinct eigenvalues for $A \in {}^n \mathbb{R}^n$, then $\mathscr{E}_{\lambda} \cap \mathscr{E}_{\mu} = \{ 0 \}$
 - Proof: Let $\boldsymbol{x} \in \mathscr{E}_{\lambda} \cap \mathscr{E}_{\mu}$, then $\boldsymbol{A}\boldsymbol{x} = \lambda \boldsymbol{x}$ and $\boldsymbol{A}\boldsymbol{x} = \mu \boldsymbol{x} \implies \lambda \boldsymbol{x} = \mu \boldsymbol{x} \implies (\lambda \mu)\boldsymbol{x} = \boldsymbol{0}$, but $\lambda \neq \mu$ so $\boldsymbol{x} = \boldsymbol{0}$
- Note eigenvalues may be complex

Diagonalizability

- We have $\begin{cases} \boldsymbol{A}\boldsymbol{p}_1 = \lambda_1 \boldsymbol{p}_1 \\ \vdots & \Longrightarrow & \boldsymbol{A} \begin{bmatrix} \boldsymbol{p}_1 & \cdots & \boldsymbol{p}_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{p}_1 & \cdots & \boldsymbol{p}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$

 - Suppose p_1, \dots, p_n are linearly independent, then **P** is invertible, then $P^{-1}AP = \Lambda$ * This is called *diagonalization* since Λ is a diagonal matrix
- If we had $\dot{\eta} = \Lambda \eta \implies \{ \dot{\eta}_i = \lambda_i \eta_i \}$, which is a system of decoupled differential equations
- Definition: $P \in {}^{n}\mathbb{R}^{n}$ diagonalizes $A \in {}^{n}\mathbb{R}^{n}$ if P is invertible and $P^{-1}AP = \Lambda$
 - However, it's not always possible to find a set of p_n such that P is invertible, i.e. not all matrices are diagonalizable
- Theorem I: Diagonalization Theorem: The matrix $P \in {}^{n}\mathbb{R}^{n}$ diagonalizes $A \in {}^{n}\mathbb{R}^{n}$ (i.e. $P^{-1}AP = \Lambda$) iff **P** the columns of **P** are eigenvectors of **A** that form a basis for ${}^{n}\mathbb{R}$
- Note that $P^{-1}AP = \Lambda \implies A = P\Lambda P^{-1}$