Lecture 25, Mar 18, 2022

Cramer's Rule

• Cramer's Rule (Maclaurin-Cramer Rule): The solution to Ax = b where $A \in {}^n \mathbb{R}^n$ is given by $x_i = \frac{\det A_i}{\det A}$ where x_i are the components of x and A_i is A with column i replaced by b, if $\det A \neq 0$

$$- \mathbf{A}_{i} = \begin{bmatrix} \mathbf{c}_{1} & \cdots & \mathbf{b} & \cdots & \mathbf{c}_{n} \end{bmatrix}$$
$$- \mathbf{b} = \mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{c}_{1} & \cdots & \mathbf{c}_{n} \end{bmatrix} \mathbf{x} = \sum_{j=1}^{n} x_{j}\mathbf{c}_{j}$$
$$- \det \mathbf{A}_{i} = \det \begin{bmatrix} \mathbf{c}_{1} & \cdots & \sum_{j=1}^{n} x_{j}\mathbf{c}_{j} & \cdots & \mathbf{c}_{n} \end{bmatrix}$$
$$= \det \begin{bmatrix} \mathbf{c}_{1} & \cdots & x_{i}\mathbf{c}_{i} + \sum_{\substack{j=1\\ j \neq i}}^{n} x_{j}\mathbf{c}_{j} & \cdots & \mathbf{c}_{n} \end{bmatrix}$$
$$= \det \begin{bmatrix} \mathbf{c}_{1} & \cdots & x_{i}\mathbf{c}_{i} & \cdots & \mathbf{c}_{n} \end{bmatrix}$$
$$= x_{i} \det \begin{bmatrix} \mathbf{c}_{1} & \cdots & \mathbf{c}_{i} & \cdots & \mathbf{c}_{n} \end{bmatrix}$$
$$= x_{i} \det \mathbf{A}$$

- Provided that det $\mathbf{A} \neq 0$, we have det $\mathbf{A}_i = x_i \det \mathbf{A} \implies x_i = \frac{\det \mathbf{A}_i}{\det \mathbf{A}}$ Note the sum is just adding multiples of other columns, which does not change the determinant as per determinant properties
- Cramer's rule is computationally inefficient for larger matrices $(\mathcal{O}((n+1)!))$ operations if taking determinants recursively); Gaussian elimination is much better for larger matrices ($\mathcal{O}(n^3)$ operations)
 - For smaller matrices it might be faster; in general this depends on the matrix itself (e.g. number of zeros)

Cofactors and Adjoints

- Definition: The (i,j) cofactor of $A \in {}^n \mathbb{R}^n$ is $c_{ij}(A) = (-1)^{i+j} \det M_{ij}(A)$
 - Using the cofactor, the determinant can be written as $\sum_{i=1}^{n} a_{kj} c_{kj}$, true for any k

•
$$\sum_{j=1}^{n} a_{ij} c_{kj} = \begin{cases} \det \mathbf{A} & k=i \\ 0 & k \neq i \end{cases}$$

- Proof: Consider $\mathbf{A}' \in {}^{n}\mathbb{R}^{n}$ which is \mathbf{A} with row k replaced with row i
 - * det $\mathbf{A}' = 0$ because rows are not independent
 - * Using the Laplace expansion about row k: det $\mathbf{A}' = 0 = \sum_{i=1}^{n} a'_{kj} c_{kj}(\mathbf{A}') = \sum_{i=1}^{n} a_{ij} c_{kj}(\mathbf{A})$

 - $a'_{kj} = a_{ij}$ because we replaced row k by row i $c_{kj}(\mathbf{A}') = c_{kj}(\mathbf{A})$ because row k was eliminated in the calculation of the cofactor so the minors are the same
- $\sum_{i=1}^{j} a_{ij} c_{kj}$ is like taking AC^T where $C = [c_{kj}]$ is the cofactor matrix
- $\begin{cases} \det \boldsymbol{A} & k = i \\ 0 & k \neq i \end{cases} \text{ is just } (\det \boldsymbol{A}) \boldsymbol{1}$
- $AC^T = (\det A)\mathbf{1}$
- Definition: The *adjoint* of \boldsymbol{A} is adj $\boldsymbol{A} = \boldsymbol{C}^T$ - Also known as the *adjugate*
- Theorem VIII: $A(\operatorname{adj} A) = (\det A)\mathbf{1} = (\operatorname{adj} A)A$

– If \boldsymbol{A} is invertible then $\boldsymbol{A}^{-1} = \frac{1}{\det \boldsymbol{A}} \operatorname{adj} \boldsymbol{A}$

- $\det(\operatorname{adj} \boldsymbol{A}) = (\det \boldsymbol{A})^{n-1}$
- If \mathbf{A} is non-invertible, then $(\operatorname{adj} \mathbf{A})\mathbf{A} = \mathbf{0} \implies \operatorname{col} \mathbf{A} \subseteq \operatorname{null} \operatorname{adj} \mathbf{A}$; if $\mathbf{A} \neq \mathbf{0}$, dim $\operatorname{col} \mathbf{A} \geq 1 \implies \operatorname{dim} \operatorname{null} \operatorname{adj} \mathbf{A} \geq 1$
 - $-n \operatorname{rank} \operatorname{adj} \boldsymbol{A} = \operatorname{dim} \operatorname{null} \operatorname{adj} \boldsymbol{A} \implies \operatorname{rank} \operatorname{adj} \boldsymbol{A} < n \implies \operatorname{adj} \boldsymbol{A} \text{ is not invertible}$
 - $det(adj \mathbf{A}) = 0$ so the previous equation still holds