Lecture 24, Mar 15, 2022

Additional Properties of the Determinant

- Determinant of elementary matrices: det $\boldsymbol{E}(i, j) = -1$, det $\boldsymbol{E}(\lambda; i) = \lambda$, det $\boldsymbol{E}(\lambda; i, j) = 1$
- Theorem IV: Cauchy-Binet Product Rule: Let $A, B \in {}^n \mathbb{R}^n$, then $\det(AB) = \det(A) \det(B)$
 - Proof: Define $\Delta_{\boldsymbol{B}}(\boldsymbol{A}) = \det(\boldsymbol{A}\boldsymbol{B})$
 - * Claim: Δ_B is a proper determinant function:
 - 1. $\Delta_{\boldsymbol{B}} \left[\boldsymbol{E}(1;i,j)\boldsymbol{A} \right] = \det \left[\boldsymbol{E}(1;i,j)\boldsymbol{A}\boldsymbol{B} \right] = \det(\boldsymbol{A}\boldsymbol{B}) = \Delta_{\boldsymbol{B}}(\boldsymbol{A})$
 - 2. $\Delta_{\boldsymbol{B}} \left[\boldsymbol{E}(\lambda; i) \boldsymbol{A} \right] = \det \left[\boldsymbol{E}(\lambda; i) \boldsymbol{A} \boldsymbol{B} \right] = \lambda \det(\boldsymbol{A} \boldsymbol{B}) = \lambda \Delta_{\boldsymbol{B}}(\boldsymbol{A})$
 - * From $\Delta_n(A) = \det(A)\Delta_n(1)$ we know $\Delta_B(A) = \det(A)\Delta_B(1) = \det(A)\det(B)$
 - * Therefore $\det(\mathbf{A}) \det(\mathbf{B}) = \Delta_{\mathbf{B}}(\mathbf{A}) = \det(\mathbf{AB})$
- Theorem V: Transpose Rule: Let $A \in {}^n \mathbb{R}^n$, then det $A = \det A^T$
 - This means we can also compute the determinant along rows instead of columns, since the matrix can be transposed and the determinant is unchanged
 - Proof: Define $\Delta_T(\mathbf{A}) = \det \mathbf{A}^T$
 - * Claim: Δ_T is a proper determinant function:
 - 1. $\Delta_T \left[\boldsymbol{E}(1; i, j) \boldsymbol{A} \right] = \det(\boldsymbol{E}\boldsymbol{A})^T = \det(\boldsymbol{A}^T \boldsymbol{E}^T) = \det(\boldsymbol{A}^T) \det(\boldsymbol{E}^T) = \det(\boldsymbol{A}^T) \det(\boldsymbol{E}(\lambda; j, i)) = \det(\boldsymbol{A}^T) = \Delta_T(\boldsymbol{A})$
 - 2. $\Delta_T [\boldsymbol{E}(\lambda; i)\boldsymbol{A}] = \det(\boldsymbol{A}^T) \det(\boldsymbol{E}^T) = \det(\boldsymbol{A}^T) \det(\boldsymbol{E}(\lambda; i)) = \lambda \det(\boldsymbol{A}^T) = \lambda \Delta_T(\boldsymbol{A})$ 3. $\Delta_T (\mathbf{1}) = \det(\mathbf{1}^T) = \det \mathbf{1} = 1$
 - * Therefore Δ_T is the determinant, and since the determinant is unique, det $A^T = \Delta_T(A) = \det A$
- Theorem VI: Invertibility theorem: $A \in {}^n \mathbb{R}^n$ is invertible iff det $A \neq 0$
 - Proof:
 - * If \mathbf{A} invertible, then $\mathbf{A}\mathbf{A}^{-1} = \mathbf{1} \implies \det(\mathbf{A}\mathbf{A}^{-1}) = \det \mathbf{1} = 1 \implies \det(\mathbf{A})\det(\mathbf{A}^{-1}) = 1$ so $\det(\mathbf{A}) \neq 0$
 - Corollary: det $A^{-1} = \frac{1}{\det A}$ if A is invertible
 - * By contraposition, if A is not invertible, then its rows are dependent, then det A = 0; therefore det $A \neq 0 \implies A$ is invertible