Lecture 23, Mar 14, 2022

The Determinant

• Lemma I: If $\Delta_n : {}^n \mathbb{R}^n \to \mathbb{R}$ is a determinant function, then $\Delta_n(\mathbf{A}) = \kappa(\mathbf{A})\Delta_n(\mathbf{1})$ where $\kappa(\mathbf{A})$ is a scalar function of \mathbf{A}

- Proof: Gaussian eliminate on \boldsymbol{A} until it is upper triangular, i.e. $\boldsymbol{E}_1 \cdots \boldsymbol{E}_n \boldsymbol{U}$; $\Delta_n(\boldsymbol{U}) = \Delta_n(1) \prod_{i=1}^n u_{ii}$

which is a scalar times $\Delta_n(\mathbf{1})$; since elementary matrices either scale, negate, or leave the determinant unchanged, the final result is going to be a scalar times $\Delta_n(\mathbf{1})$

- Theorem II: Let $\Delta_n : {}^n \mathbb{R}^n \to \mathbb{R}$ and $\hat{\Delta}_n : {}^n \mathbb{R}^n \to \mathbb{R}$; $\hat{\Delta}_n$ satisfies an additional property DIII $\hat{\Delta}_n(\mathbf{1}) = 1$; then $\Delta_n(\mathbf{A}) = \hat{\Delta}_n(\mathbf{A})\Delta_n(\mathbf{1})$
 - Proof: Consider $\Delta_n(\mathbf{A}) \hat{\Delta}_n(\mathbf{A})\Delta_n(\mathbf{1}) = \kappa(\mathbf{A})\Delta_n(\mathbf{1}) \kappa(\mathbf{A})\hat{\Delta}_n(\mathbf{1})\Delta_n(\mathbf{1})$ = $\kappa(\mathbf{A})\Delta_n(\mathbf{1}) - \kappa(\mathbf{A})\Delta_n(\mathbf{1})$ = 0

- Corollary: If $\Delta_n(1) = 1$ as well, then $\Delta_n(A) = \hat{\Delta}_n(A)$

- * If DIII also holds, then the determinant function is unique • Definition: The *determinant* of $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$ is the unique determinant function $\Delta_{n} : {}^{n}\mathbb{R}^{n} \to \mathbb{R}$ that satisfies:
 - 1. DI: Adding one row to another row leaves the result unchanged: $\Delta_n \left[\mathbf{E}(1; i, j) \mathbf{A} \right] = \Delta_n(\mathbf{A})$
 - $\boldsymbol{E}(\lambda; i, j)$ is an elementary matrix of type III that multiplies row j by λ and adds it to row i2. DII: $\Delta_n [\boldsymbol{E}(\lambda, i)\boldsymbol{A}] = \lambda \Delta_n(\boldsymbol{A})$
 - $\boldsymbol{E}(\lambda, i)$ is an elementary matrix of type II that multiplies row i by λ

3. DIII:
$$\Delta_n(\mathbf{1}) = 1$$

- Definition: The (i, j) minor of a square matrix $A \in {}^{n}\mathbb{R}^{n}$, denoted $M_{ij}(A) \in {}^{n-1}\mathbb{R}^{n-1}$, is the matrix obtained by eliminating the *i*-th row and *j*-th column
- Definition: The function $\det_n : {}^n \mathbb{R}^n \to \mathbb{R}$ is $\det_n A = \sum_{k=1}^n (-1)^{k+j} a_{kj} \det_{n-1} M_{kj}(A)$ for any $1 \le j \le n$
 - and $\det_1 \left[a \right] = a$
 - We can use any column and the definition still works
 - This is known as the Laplace expansion
- Theorem III: ${\det}_n{}^n\mathbb{R}^n\mapsto\mathbb{R}$ is the determinant
- This shows the existence and uniqueness of the determinant
- The determinant can also be denoted $|\boldsymbol{A}|$