Lecture 2, Jan 14, 2022

Vector Spaces

- A vector space is the generalized concept of a vector that satisfies the usual rules of vector arithmetic
- Fundamental abstract operations addition + and scalar multiplication \cdot can be defined in any way, not just the common component-wise way
 - If it can be defined in any way, what makes a definition meaningful? When does it make sense?
- Definition: A vector space \mathcal{V} over a field Γ of elements $\{\alpha, \beta, \gamma, \cdots\}$ called *scalars*, is a set of elements $\{u, v, w, \cdots\}$ such that the following *axioms* are satisfied:
 - 1. Vector addition denoted u + v satisfies, for all $u, v, w \in \mathcal{V}$ (properties AI AIV):
 - 1. Closure: $u + v \in \mathcal{V}$
 - 2. Associativity: (u + v) + w = u + (v + w)
 - 3. Existence of zero or null vector $0 \in \mathcal{V}$ such that u + 0 = u
 - 4. Existence of a negative or additive inverse $-u \in \mathcal{V}$ such that u + (-u) = 0
 - 2. Scalar multiplication denoted αu , such that for all $u, v \in \mathcal{V}$ and $\alpha, \beta \in \Gamma$ (properties MI MIV):
 - 1. Closure: $\alpha u \in \mathcal{V}$
 - 2. Associativity: $\alpha(\beta u) = (\alpha \beta)u$
 - 3. Distributivity: $(\alpha + \beta)u = \alpha u + \beta u$, and $\alpha(u + v) = \alpha u + \alpha v$
 - 4. Unitary: For the identity $1 \in \Gamma$, 1u = u
- Note that these properties imply commutativity for vector addition (will prove in a following lecture)
- A field Γ is a commutative group that has two operations, addition and multiplication (between scalars), and has a set of elements such that:
 - 1. Γ is commutative under addition
 - 2. Γ is commutative under multiplication excluding zero
 - 3. Multiplication is distributive over addition
- For us the field is almost always going to be $\mathbb{R};$ other examples of fields include the rationals, the complex numbers, etc
- A group is a set of elements $\{x, y, z, \dots\}$ and a binary operation xy such that the operation is closed, associative, and there exists an inverse and identity for this operation; commutative groups additionally have xy = yx
- Matrices are an example of a vector space since they satisfy all of the requirements, so we can think of matrices as vectors
- Formally we would say \mathcal{V} is a vector space over the field Γ under vector addition + and scalar multiplication \cdot ; as a shorthand we just say \mathcal{V} is a vector space