Lecture 18, Mar 1, 2022

Linear Transformations/Operators

- Definition: A *linear transformation* is a transformation between two vector spaces \mathcal{V} and \mathcal{W} , $\mathscr{L} : \mathcal{V} \mapsto \mathcal{W}$ (where \mathcal{V} is the *domain* and \mathcal{W} is the *codomain*) that has the following properties:
 - 1. (L1) Distribution: $\mathscr{L}(\boldsymbol{u} + \boldsymbol{v}) = \mathscr{L}(\boldsymbol{u}) + \mathscr{L}(\boldsymbol{v}), \forall \boldsymbol{u}, \boldsymbol{v} \in \mathcal{V}$
 - 2. (L2) Homogeneity: $\mathscr{L}(\lambda \boldsymbol{v}) = \lambda \mathscr{L}(\boldsymbol{v}), \forall \boldsymbol{v} \in \mathcal{V}, \lambda \in \Gamma$
- These properties can be combined into one as $\mathscr{L}(\lambda u + \mu v) = \lambda \mathscr{L}(u) + \mu \mathscr{L}(v)$
- A matrix $A \in {}^m \mathbb{R}^n$ can be thought of as a linear transformation of $A : {}^m \mathbb{R} \mapsto {}^n \mathbb{R}$
- The trace tr $A = \sum_{i=1}^{n} a_{ii}$ is a linear transformation tr : ${}^{n}\mathbb{R}^{n} \mapsto \mathbb{R}$

- L1:
$$\operatorname{tr}(\boldsymbol{A} + \boldsymbol{B}) = \sum_{i=1}^{n} (a_{ii} + b_{ii}) = \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii} = \operatorname{tr} \boldsymbol{A} + \operatorname{tr} \boldsymbol{B}$$

- L2: $\operatorname{tr}(\lambda \boldsymbol{A}) = \sum_{i=1}^{n} \lambda a_{ii} = \lambda \sum_{i=1}^{n} a_{ii} = \lambda \operatorname{tr} \boldsymbol{A}$

• Properties of linear transformations $\mathscr{L}: \mathcal{V} \mapsto \mathcal{W}$:

1.
$$\mathscr{L}(\mathbf{0}) = \mathbf{0}$$

 $-\mathscr{L}(\mathbf{0}) = \mathscr{L}(0\mathbf{v}) = 0\mathscr{L}(\mathbf{v}) = \mathbf{0}$
2. $\mathscr{L}(-\mathbf{v}) = -\mathscr{L}(\mathbf{v})$
 $-\mathscr{L}(-\mathbf{v}) = \mathscr{L}((-1)\mathbf{v}) = -1\mathscr{L}(\mathbf{v}) = -\mathscr{L}(\mathbf{v})$
3. $\mathscr{L}\left(\sum_{i=1}^{n} \lambda_i \mathbf{v}_i\right) = \sum_{i=1}^{n} \lambda \mathscr{L}(\mathbf{v}_i)$
 $-$ Proven by induction

- Definition: The *image* of a linear transformation $\mathscr{L} : \mathcal{V} \mapsto \mathcal{W}$ is $\operatorname{im} \mathscr{L} = \{ w \in \mathcal{W} \mid w = \mathscr{L}(v), \forall v \in \mathcal{V} \}$ (column space for a matrix)
 - The image is a subspace of \mathcal{W}
- \mathscr{L} maps \mathcal{V} into \mathcal{W} if $\mathscr{L}: \mathcal{V} \mapsto \mathcal{W}$ but im $\mathscr{L} \neq \mathcal{W}$
- \mathscr{L} maps \mathcal{V} onto \mathcal{W} if $\operatorname{im} \mathscr{L} = \mathcal{W}$ (surjective), i.e. $\forall w \in \mathcal{W}, \exists v \ni \mathscr{L}(v) = w$
- \mathscr{L} is *injective* if it is one-to-one, i.e. no two vectors in \mathcal{V} maps onto the same vector in \mathcal{W} : $\nexists v_1 = v_2 \in \mathcal{V} \ni \mathscr{L}(v_1) = \mathscr{L}(v_2)$
- If ${\mathscr L}$ is surjective and injective then it is bijective
 - Bijective transformations have inverses
- Definition: The *kernel* of a linear transformation $\mathscr{L} : \mathcal{V} \mapsto \mathcal{W}$ is ker $\mathscr{L} = \{ v \in \mathcal{V} \mid \mathscr{L}(v) = 0 \}$ (null space for a matrix)
 - The kernel is a subspace of ${\mathcal V}$
 - The kernel is everything in \mathcal{V} that maps to **0** in \mathcal{W}
- The dimension formula for linear transformations: $\dim \ker \mathscr{L} + \dim \operatorname{im} \mathscr{L} = \dim \mathcal{V}$
 - Analogous to the dimension formula for matrices; for matrices ker A = null A, im A = col A and $\dim \mathcal{V} = n$