Lecture 17, Feb 28, 2022

Non-Square Matrices

- Theorem IV: Let $A \in {}^m \mathbb{R}^n$; then the following are equivalent:
 - 1. rank $\boldsymbol{A} = n$
 - 2. The columns of \boldsymbol{A} are linearly independent
 - 3. $Ax = 0 \implies x = 0$
 - 4. $\boldsymbol{A}^T \boldsymbol{A}$ is invertible
 - 5. **A** has a left inverse $(\exists B \ni BA = 1 \in {}^{n}\mathbb{R}^{n})$, where $B = (A^{T}A)^{-1}A^{T}$ is the left inverse, known as the Moore-Penrose pseudoinverse
- This necessitates $m \ge n$, i.e. A is a "tall" matrix, because if n > m then the columns cannot be independent
- Proof:
 - $-1 \implies 2$: rank $\mathbf{A} = n \implies \dim \operatorname{col} \mathbf{A} = n$ so the columns are linearly independent as there are n columns
 - $-2 \implies 3$: The columns are independent, so the only linear combination of the columns that add to 0 is all 0s, which is the zero vector
 - $\begin{array}{l} -3 \implies 4: \ \boldsymbol{A}^{T}\boldsymbol{A} \text{ is square, so it is invertible if and only if } \boldsymbol{A}^{T}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0} \implies \boldsymbol{x} = \boldsymbol{0} \\ & * \text{ Lemma III: Let } \boldsymbol{s} \in {}_{n}^{n}\mathbb{R} \text{ and } \boldsymbol{s}^{T}\boldsymbol{s} = 0 \text{ then } \boldsymbol{s} = \boldsymbol{0} \end{array}$
 - Proof: $s^T s = \sum_{i=1}^n s_i^2 = 0$ but each $s_i^2 \ge 0$, which means all $s_i^2 = 0 \implies s_i = 0 \implies s = 0$ * $A^T A x = 0$ $\implies x^T A^T A x = 0$

$$\implies \mathbf{x} \cdot \mathbf{A} \cdot \mathbf{A} \mathbf{x} = 0$$
$$\implies (\mathbf{A}\mathbf{x})^T (\mathbf{A}\mathbf{x}) = 0$$

- $\Rightarrow Ax = 0$
- $\implies x = 0$
- $-4 \implies 5$: $A^T A$ is invertible implies $\exists C \ni C A^T A = 1$; let $B = C A^T$, then B is the one-sided inverse
- $-5 \implies 1$: Show the columns are linearly independent: $\sum_{i=1}^{n} x_i c_i = 0$ $\implies Ac = 0$ $\implies BAc = 0$ $\implies 1c = 0$ $\implies c = 0$
- Theorem IV: Let $A \in {}^m \mathbb{R}^n$ (this time $n \ge m$, i.e. A is short and wide); then the following are equivalent: 1. rank A = m
 - 2. The rows of \boldsymbol{A} are linearly independent
 - 3. $\boldsymbol{x}^T \boldsymbol{A} = \boldsymbol{0}^T \implies \boldsymbol{x} = \boldsymbol{0}$
 - 4. AA^T is invertible
 - 5. **A** has a right inverse $(\exists B \ni AB = 1 \in {}^m \mathbb{R}^m)$, where $B = A^T (AA^T)^{-1}$ (also the Moore-Penrose pseudoinverse)